Publications by authors named "Zachary T Hilt"

The most common congenital viral infection is CMV, which leads to numerous neurologic disabilities. Using a mouse model of congenital CMV, we previously determined that Ag-specific CD8+ T cells traffic to the brain in a CCR9-dependent manner. The mechanism by which these CD8+ T cells acquire a CCR9-dependent "brain-tropic" phenotype remains unclear.

View Article and Find Full Text PDF

CD8+ T lymphocytes infiltrate the brain during congenital CMV infection and promote viral clearance. However, the mechanisms by which CD8+ T cells are recruited to the brain remain unclear. Using a mouse model of congenital CMV, we found a gut-homing chemokine receptor (CCR9) was preferentially expressed in CD8+ T cells localized in the brain postinfection.

View Article and Find Full Text PDF

Rationale: Circulating monocytes can have proinflammatory or proreparative phenotypes. The endogenous signaling molecules and pathways that regulate monocyte polarization in vivo are poorly understood. We have shown that platelet-derived β2M (β-2 microglobulin) and TGF-β (transforming growth factor β) have opposing effects on monocytes by inducing inflammatory and reparative phenotypes, respectively, but each bind and signal through the same receptor.

View Article and Find Full Text PDF

Although platelets are the cellular mediators of thrombosis, they are also immune cells. Platelets interact both directly and indirectly with immune cells, impacting their activation and differentiation, as well as all phases of the immune response. Megakaryocytes (Mks) are the cell source of circulating platelets, and until recently Mks were typically only considered bone marrow-resident (BM-resident) cells.

View Article and Find Full Text PDF

Platelets have central roles in both immune responses and development. Stimulated platelets express leukocyte adhesion molecules and release numerous immune modulatory factors that recruit and activate leukocytes, both at the sites of activation and distantly. Monocytes are innate immune cells with dynamic immune modulatory functions that change during the aging process, a phenomenon termed "inflammaging".

View Article and Find Full Text PDF

β-2 Microglobulin (β2M) is a molecular chaperone for the major histocompatibility class I (MHC I) complex, hemochromatosis factor protein (HFE), and the neonatal Fc receptor (FcRn), but β2M may also have less understood chaperone-independent functions. Elevated plasma β2M has a direct role in neurocognitive decline and is a risk factor for adverse cardiovascular events. β2M mRNA is present in platelets at very high levels, and β2M is part of the activated platelet releasate.

View Article and Find Full Text PDF

Platelets have dual physiologic roles as both cellular mediators of thrombosis and immune modulatory cells. Historically, the thrombotic function of platelets has received significant research and clinical attention, but emerging research indicates that the immune regulatory roles of platelets may be just as important. We now know that in addition to their role in the acute thrombotic event at the time of myocardial infarction, platelets initiate and accelerate inflammatory processes that are part of the pathogenesis of atherosclerosis and myocardial infarction expansion.

View Article and Find Full Text PDF