Centrosome positioning is essential for their function. Typically, centrosomes are transported to various cellular locations through the interaction of centrosomal microtubules (MTs) with motor proteins anchored at the cortex or the nuclear surface. However, it remains unknown how centrioles migrate in cellular contexts in which they do not nucleate MTs.
View Article and Find Full Text PDFPolar body emission is a special form of cytokinesis in oocyte meiosis that ensures the correct number of chromosomes in reproduction-competent eggs. The molecular mechanism of the last step, polar body abscission, is poorly understood. While it has been proposed that Ca signaling plays important roles in embryonic cytokinesis, to date transient increases in intracellular free Ca have been difficult to document in oocyte meiosis except for the global Ca wave induced by sperm at fertilization.
View Article and Find Full Text PDFMany cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood.
View Article and Find Full Text PDFInterest in cortical excitability-the ability of the cell cortex to generate traveling waves of protein activity-has grown considerably over the past 20 years. Attributing biological functions to cortical excitability requires an understanding of the natural behavior of excitable waves and the ability to accurately quantify wave properties. Here we have investigated and quantified the onset of cortical excitability in eggs and embryos and the changes in cortical excitability throughout early development.
View Article and Find Full Text PDFThe cell cortex, comprised of the plasma membrane and underlying cytoskeleton, undergoes dynamic reorganizations during a variety of essential biological processes including cell adhesion, cell migration, and cell division. During cell division and cell locomotion, for example, waves of filamentous-actin (F-actin) assembly and disassembly develop in the cell cortex in a process termed "cortical excitability." In developing frog and starfish embryos, cortical excitability is generated through coupled positive and negative feedback, with rapid activation of Rho-mediated F-actin assembly followed in space and time by F-actin-dependent inhibition of Rho.
View Article and Find Full Text PDFRho GTPases such as Rho, Rac, and Cdc42 are important regulators of the cortical cytoskeleton in processes including cell division, locomotion, and repair. In these processes, Rho GTPases assume characteristic patterns wherein the active GTPases occupy mutually exclusive "zones" in the cell cortex. During cell wound repair, for example, a Rho zone encircles the wound edge and is in turn encircled by a Cdc42 zone.
View Article and Find Full Text PDFAs the interface between the cell and its environment, the cell cortex must be able to respond to a variety of external stimuli. This is made possible in part by cortical excitability, a behavior driven by coupled positive and negative feedback loops that generate propagating waves of actin assembly in the cell cortex. Cortical excitability is best known for promoting cell protrusion and allowing the interpretation of and response to chemoattractant gradients in migrating cells.
View Article and Find Full Text PDFMitotic spindles are well known to be assembled from and dependent on microtubules. In contrast, whether actin filaments (F-actin) are required for or are even present in mitotic spindles has long been controversial. Here we have developed improved methods for simultaneously preserving F-actin and microtubules in fixed samples and exploited them to demonstrate that F-actin is indeed associated with mitotic spindles in intact embryonic epithelia.
View Article and Find Full Text PDFCell division is critical for development, organ growth, and tissue repair. The later stages of cell division include the formation of the microtubule (MT)-rich central spindle in anaphase, which is required to properly define the cell equator, guide the assembly of the acto-myosin contractile ring and ultimately ensure complete separation and isolation of the two daughter cells via abscission. Much is known about the molecular machinery that forms the central spindle, including proteins needed to generate the antiparallel overlapping interzonal MTs.
View Article and Find Full Text PDFPhysically separating daughter cells during cytokinesis requires contraction of an actin-myosin ring and vesicle-mediated membrane addition at the cleavage furrow. To identify vesicle trafficking proteins that function in cytokinesis, we screened deficiencies and mutations of candidate genes by live imaging the mitotic domains of the Drosophila embryo. In embryos homozygous for some of these deficiencies, we observed several cytokinesis phenotypes, including slow furrow ingression and increased membrane blebbing.
View Article and Find Full Text PDF