Irisin is considered to be a promising therapeutic approach for cardiac depression and inflammatory disorders. The short half-life of irisin impeded its use and drug efficacy in the treatment. This study aimed to examine if pegylated gold nanoparticles-conjugated to irisin would improve therapeutic effects in cecal ligation and puncture (CLP)-induced sepsis in mice.
View Article and Find Full Text PDFNanocomposite aerogels exhibit high porosity and large interfacial surface areas, enabling enhanced chemical transport and reactivity. Such mesoporous architectures can be prepared by freeze-casting naturally-derived biopolymers such as silk fibroin, but often form mechanically weak structures that degrade in water, which limits their performance under ambient conditions. Adding 2D material fillers such as graphene oxide (GO) or transition metal carbides ( MXene) could potentially reinforce these aerogels stronger intermolecular interactions with the polymeric binder.
View Article and Find Full Text PDFPer- and polyfluoralkyl substances (PFAS) are known to accumulate at interfaces, and the presence of nonaqueous-phase liquids (NAPLs) could influence the PFAS fate in the subsurface. Experimental and mathematical modeling studies were conducted to investigate the effect of a representative NAPL, tetrachloroethene (PCE), on the transport behavior of PFAS in a quartz sand. Perfluorooctanesulfonate (PFOS), perfluorononanoic acid (PFNA), a 1:1 mixture of PFOS and PFNA, and a mixture of six PFAS (PFOS, PFNA, perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), perfluorohexanesulfonate (PFHxS), and perfluorobutanesulfonate (PFBS)) were used to assess PFAS interactions with PCE-NAPL.
View Article and Find Full Text PDFAquatic contamination by per- and polyfluorinated alkyl substances (PFAS) has attracted global attention due to their environmental and health concerns. Current health advisories and surface water regulatory limits require PFAS detection in the parts per trillion (ppt) range. One way to achieve those low detection limits is to use a reliable passive sampling-based monitoring tool for PFAS, as exists for numerous nonpolar persistent organic pollutants.
View Article and Find Full Text PDFSolution co-deposition of two-dimensional (2D) nanosheets with chemical solutes yields nanosheet-molecular heterostructures. A feature of these macroscopic layered hybrids is their ability to release the intercalated molecular agent to express chemical functionality on their surfaces or in their near surroundings. Systematic design methods are needed to control this molecular release to match the demand for rate and lifetime in specific applications.
View Article and Find Full Text PDFAt sites where aqueous film forming foams (AFFFs) are used for fire suppression or training activities, interactions between dissolved foam constituents and organic liquids could alter contaminant migration in the subsurface. In this study, batch reactor and column experiments were conducted to investigate the potential for AFFF solutions to enhance the solubility and mobility of three representative non-aqueous phase liquid (NAPLs), JP-4 jet fuel, trichloroethene (TCE), and tetrachloroethene (PCE). For AFFF concentrations up to 5% wt.
View Article and Find Full Text PDFThermal exfoliation is an efficient and scalable method for the production of graphene nanosheets or nanoplatelets, which are typically re-assembled or blended to form new macroscopic "graphene-based materials". Thermal exfoliation can be applied to these macroscopic graphene-based materials after casting to create internal porosity, but this process variant has not been widely studied, and can easily lead to destruction of the physical form of the original cast body. Here we explore how the partial thermal exfoliation of graphene oxide (GO) multilayer nanosheet films can be used to control pore structure and electrical conductivity of planar, textured, and confined GO films.
View Article and Find Full Text PDF