Background: Declines in biodiversity and ecosystem health due to climate change are raising urgent concerns. In response, large-scale multispecies monitoring programmes are being implemented that increasingly adopt sensor-based approaches such as acoustic recording. These approaches rely heavily on ecological data science.
View Article and Find Full Text PDFThe cathode-electrolyte interphase (CEI) in Li-ion batteries plays a key role in suppressing undesired side reactions while facilitating Li-ion transport. Ni-rich layered cathode materials offer improved energy densities, but their high interfacial reactivities can negatively impact the cycle life and rate performance. Here we investigate the role of electrolyte salt concentration, specifically LiPF (0.
View Article and Find Full Text PDFNickel-rich layered oxide cathodes such as NMC811 (LiNiMnCoO) currently have the highest practical capacities of cathodes used commercially, approaching 200 mAh/g. Lithium is removed from NMC811 via a solid-solution behavior when delithiated to > 0.10, maintaining the same layered (O3 structure) throughout as observed via operando diffraction measurements.
View Article and Find Full Text PDFImproved analytical tools are urgently required to identify degradation and failure mechanisms in Li-ion batteries. However, understanding and ultimately avoiding these detrimental mechanisms requires continuous tracking of complex electrochemical processes in different battery components. Here, we report an operando spectroscopy method that enables monitoring the chemistry of a carbonate-based liquid electrolyte during electrochemical cycling in Li-ion batteries with a graphite anode and a LiNiMnCoO cathode.
View Article and Find Full Text PDFWe present a structural and magnetic study of two batches of polycrystalline LiNiMnCoO (commonly known as Li NMC 811), a Ni-rich Li ion battery cathode material, using elemental analysis, X-ray and neutron diffraction, magnetometry, and polarized neutron scattering measurements. We find that the samples, labeled S1 and S2, have the composition LiNiMnCoO, with = 0.025(2), = 0.
View Article and Find Full Text PDFThe selective hybridization of DNA is of key importance for many practical applications such as gene detection and DNA-mediated self-assembly. These applications require a quantitative prediction of the hybridization free energy. Existing methods ignore the effects of non-complementary ssDNA tails beyond the first unpaired base.
View Article and Find Full Text PDFWe demonstrate the realization of a two-dimensional chiral optical waveguide with an infinite translational symmetry that exhibits asymmetric wave propagation. The low-symmetry geometry of the cross-section that lacks any rotational and mirror symmetries shows in-principal directional asymmetric polarization rotation. We use general symmetry arguments to provide qualitative analysis of the waveguide's eigenstates and numerically corroborate this using finite element simulation.
View Article and Find Full Text PDFWe demonstrate the preparation and transmission of the lowest loss azimuthally polarized TE₀₁₋ like mode in a photonic band gap (PBG) fiber. Using the nature of the mode and the properties of the band gap structure we construct a novel coupler that operates away from the band gap's center to enhance the differential losses and facilitate the radiative loss of hybrid fundamental fiber modes. Remarkably, even though the coupler is highly multimoded, a pure azimuthally polarized mode is generated after only 17 cm.
View Article and Find Full Text PDFHollow-core photonic bandgap fibers (PBG) offer the opportunity to suppress highly the optical absorption and nonlinearities of their constituent materials, which makes them viable candidates for transmitting high-peak power pulses. We report the fabrication and characterization of polymer-composite PBG fibers in a novel materials system, polycarbonate and arsenic sulfide glass. Propagation losses for the 60 microm-core fibers are less than 2dB/m, a 52x improvement over previous 1D-PBG fibers at this wavelength.
View Article and Find Full Text PDF