Publications by authors named "Zachary Rosenkrans"

Positron emission tomography (PET) is a powerful tool for investigating the in vivo behavior of drug delivery systems. We aimed to assess the biodistribution of extracellular vesicles (EVs), nanosized vesicles secreted by cells isolated from various human cell sources using PET. EVs were isolated from mesenchymal stromal cells (MSCs) (MSC EVs), human macrophages (Mϕ EVs), and a melanoma cell line (A375 EVs) by centrifugation and were conjugated with deferoxamine for radiolabeling with Zr-89.

View Article and Find Full Text PDF

Objectives: Disialoganglioside 2 (GD2), overexpressed by cancers such as melanoma and neuroblastoma, is a tumor antigen for targeted therapy. The delivery of conventional IgG antibody technologies targeting GD2 is limited clinically by its co-expression on nerves that contributes to toxicity presenting as severe neuropathic pain. To improve the tumor selectivity of current GD2-targeting approaches, a next-generation bispecific antibody targeting GD2 and B7-H3 (CD276) was generated.

View Article and Find Full Text PDF

Unlabelled: Cancer-associated fibroblasts (CAF) are a prominent cell type within the tumor microenvironment (TME) where they are known to promote cancer cell growth and survival, angiogenesis, drug resistance, and immunosuppression. The transmembrane prolyl protease fibroblast activation protein (FAP) is expressed on the surface of highly protumorigenic CAFs found in the stroma of nearly every cancer of epithelial origin. The widespread expression of FAP has made it an attractive therapeutic target based on the underlying hypothesis that eliminating protumorigenic CAFs will disrupt the cross-talk between components of TME resulting in cancer cell death and immune infiltration.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease resulting in irreversible scarring within the lungs. However, the lack of biomarkers that enable real-time assessment of disease activity remains a challenge in providing efficient clinical decision-making and optimal patient care in IPF. Fibronectin (FN) is highly expressed in fibroblastic foci of the IPF lung where active extracellular matrix (ECM) deposition occurs.

View Article and Find Full Text PDF

The therapeutic efficacy of photodynamic therapy is limited by the ability of light to penetrate tissues. Due to this limitation, Cerenkov luminescence (CL) from radionuclides has recently been proposed as an alternative light source in a strategy referred to as Cerenkov radiation induced therapy (CRIT). Semiconducting polymer nanoparticles (SPNs) have ideal optical properties, such as large absorption cross-sections and broad absorbance, which can be utilized to harness the relatively weak CL produced by radionuclides.

View Article and Find Full Text PDF

Natural polymer-based hydrogels are excellent for encapsulating hydrophilic drugs, but they are mechanically weak and degrade easily. In this communication, we exploit the electrostatic interaction between nanosilicates (nSi) and gelatin methacrylate (GelMA) to form a mechanically tough nanocomposite hydrogel for pharmaceutical drug delivery. These hydrogels, prepared at subzero temperatures to form cryogels, displayed macroporous structures, which favors cell infiltration.

View Article and Find Full Text PDF

In breast cancer, the extracellular matrix (ECM) undergoes remodeling and changes the tumor microenvironment to support tumor progression and metastasis. Fibronectin (FN) assembly is an important step in the regulation of the tumor microenvironment since the FN matrix precedes the deposition of various other ECM proteins, controls immune cell infiltration, and serves as a reservoir for cytokines and growth factors. Therefore, FN is an attractive target for breast cancer therapy and imaging.

View Article and Find Full Text PDF

Purpose: The lack of effective molecular biomarkers to monitor idiopathic pulmonary fibrosis (IPF) activity or treatment response remains an unmet clinical need. Herein, we determined the utility of fibroblast activation protein inhibitor for positron emission tomography (FAPI PET) imaging in a mouse model of pulmonary fibrosis.

Methods: Pulmonary fibrosis was induced by intratracheal administration of bleomycin (1 U/kg) while intratracheal saline was administered to control mice.

View Article and Find Full Text PDF

Theranostic nanoparticles hold the potential to greatly improve cancer management by providing personalized medicine. Although many theranostic nanoconstructs have been successful in preclinical studies, clinical translation is still hampered by their limited targeting capability and lack of successful therapeutic efficacy. We report the use of novel ultrasmall porous silica nanoparticles (UPSN) with enhanced pharmacokinetics such as high target tissue accumulation (12% ID/g in the tumor) and evasion from the reticuloendothelial system (RES) organs.

View Article and Find Full Text PDF

Lymphoma is a heterogeneous disease with varying clinical manifestations and outcomes. Many subtypes of lymphoma, such as Burkitt's lymphoma and diffuse large B cell lymphoma, are highly aggressive with dismal prognosis even after conventional chemotherapy and radiotherapy. As such, exploring specific biomarkers for lymphoma is of high clinical significance.

View Article and Find Full Text PDF

CD20-overexpressed non-Hodgkin lymphoma typically indicates progressive malignancy. Obinutuzumab is a next-generation Food and Drug Administration-approved humanized monoclonal antibody that targets CD20. Previous studies with Zr-labeled obinutuzumab have successfully imaged CD20 in vivo.

View Article and Find Full Text PDF

Nanomedicine has benefited from recent advances in chemistry and biomedical engineering to produce nanoscale materials as theranostic agents. Well-designed nanomaterials may present optimal biological properties, influencing circulation, retention, and excretion for imaging and treatment of various diseases. As the understanding of nanomedicine pharmacokinetics expands continuously, efficient renal clearance of nanomedicines can significantly increase the signal-to-background ratio for precision diagnosis and lower potential toxicity for improved treatment.

View Article and Find Full Text PDF

Advances in technology and nanomedicine have led to the development of nanoparticles that can be activated for multimodal imaging of cancer, where a stimulus induces a material modification that enhances image contrast. Multimodal imaging using nanomaterials with this capability can combine the advantages and overcome the limitations of any single imaging modality. When designed with stimuli-responsive abilities, the target-to-background ratio of multimodal imaging nanoprobes increases because specific stimuli in the tumor enhance the signal.

View Article and Find Full Text PDF

The manifestation of acute kidney injury (AKI) is associated with poor patient outcomes, with treatment options limited to hydration or renal replacement therapies. The onset of AKI is often associated with a surfeit of reactive oxygen species. Here, it is shown that selenium-doped carbon quantum dots (SeCQDs) have broad-spectrum antioxidant properties and prominent renal accumulation in both healthy and AKI mice.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) have been the leading cause of death in United States. While tremendous progress has been made for treating CVDs over the year, the high prevalence and substantial medical costs requires the necessity for novel methods for the early diagnosis and treatment monitoring of CVDs. Macrophages are a promising target due to its crucial role in the progress of CVDs (atherosclerosis, myocardial infarction and inflammatory cardiomyopathies).

View Article and Find Full Text PDF

Pancreatic cancer is highly aggressive, with a median survival time of less than 6 months and a 5-year overall survival rate of around 7%. The poor prognosis of PaCa is largely due to its advanced stage at diagnosis and the lack of efficient therapeutic options. Thus, the development of an efficient, multifunctional PaCa theranostic system is urgently needed.

View Article and Find Full Text PDF

Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is frequently associated with oxidative stress and causes high mortality annually in clinics. Nanotechnology-mediated antioxidative therapy is emerging as a novel strategy for the treatment of AKI. Herein, a novel biomedical use of the endogenous biopolymer melanin as a theranostic natural antioxidant defense nanoplatform for AKI is reported.

View Article and Find Full Text PDF

Clinical management of anaplastic thyroid cancer (ATC) is very challenging due to its dedifferentiation and aggressiveness. We aim to develop HER2-targeted multimodal imaging approaches and assess the diagnostic efficacies of these molecular imaging probes in preclinical ATC models. Flow cytometry was used to detect HER2 expression status in thyroid cancer cell lines.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is of vital importance in several biological and physical processes. The significance of HS-specific detection and monitoring is emphasized by its elevated levels in various diseases such as cancer. Nanotechnology enhances the performance of chemical sensing nanoprobes due to the enhanced efficiency and sensitivity.

View Article and Find Full Text PDF

Cerenkov radiation (CR) from radionuclides can act as a built-in light source for cancer theranostics, opening a new horizon in biomedical applications. However, considerably low tumor-targeting efficiency of existing radionuclides and radionuclide-based nanomedicines limits the efficacy of CR-induced theranostics (CRIT). It remains a challenge to precisely and efficiently supply CR energy to the tumor site.

View Article and Find Full Text PDF

Oxidative stress is one of the important mechanisms in cerebral ischemia/reperfusion (I/R) injury. Antioxidants with high brain accumulation are highly desired to help prevent cerebral I/R injury. Herein, intrathecal injection of polyoxometalate (POM) nanoclusters as nano-antioxidants with preferential brain uptake were applied for neuronal protection in cerebral I/R injury.

View Article and Find Full Text PDF

Effective therapy for protecting dying neurons against cerebral ischemia-reperfusion injury (IRI) represents a substantial challenge in the treatment of ischemic strokes. Oxidative stress coupled with excessive inflammation is the main culprit for brain IRI that results in neuronal damage and disability. Specifically, complement component 5a (C5a) exacerbates the vicious cycle between oxidative stress and inflammatory responses.

View Article and Find Full Text PDF

The mononuclear phagocyte system (MPS, e.g., liver, spleen) is often treated as a "blackbox" by nanoresearchers in translating nanomedicines.

View Article and Find Full Text PDF