Publications by authors named "Zachary Newman"

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

We demonstrate the formation of a complex, multi-wavelength, three-dimensional laser beam configuration with integrated metasurface (MS) optics. Our experiments support the development of a compact Sr optical-lattice clock, which leverages magneto-optical trapping at 461 nm and 689 nm without bulk free-space optics. We integrate six mm-scale metasurfaces on a fused silica substrate and illuminate them with light from optical fibers.

View Article and Find Full Text PDF

Basal synaptic strength can vary greatly between synapses formed by an individual neuron because of diverse probabilities of action potential (AP) evoked transmitter release ( ). Optical quantal analysis on large numbers of identified larval glutamatergic synapses shows that short-term plasticity (STP) also varies greatly between synapses made by an individual type I motor neuron (MN) onto a single body wall muscle. Synapses with high and low and different forms and level of STP have a random spatial distribution in the MN nerve terminal, and ones with very different properties can be located within 200 nm of one other.

View Article and Find Full Text PDF

Weakening of synaptic transmission at the Drosophila larval neuromuscular junction triggers two forms of homeostatic compensation, one that increases the probability of glutamate release per action potential (Pr) and another that increases motoneuron (MN) activity. We investigated the molecular changes in MNs that underlie the increase in MN activity. RNA-seq analysis on MNs whose glutamate release is weakened by knockdown of components of the MN transmitter release machinery reveals a reduction in expression of a group of genes that encode potassium channels and their positive modulators.

View Article and Find Full Text PDF

Homeostatic regulation of excitability and synaptic transmission ensures stable neural circuit output under changing conditions. We find that pre- or postsynaptic weakening of motor neuron (MN) to muscle glutamatergic transmission in larva has little impact on locomotion, suggesting non-synaptic compensatory mechanisms. imaging of MN to muscle synaptic transmission and MN activity both show that synaptic weakening activity in tonic type Ib MNs, but not in the phasic type Is MN that innervate the same muscles.

View Article and Find Full Text PDF

Importance: Data on the performance of traumatic brain injury (TBI) biomarkers within minutes of injury are lacking.

Objectives: To examine the performance of glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and microtubule-associated protein 2 (MAP-2) within 30 and 60 minutes of TBI in identifying intracranial lesions on computed tomography (CT) scan, need for neurosurgical intervention (NSI), and clinically important early outcomes (CIEO).

Design, Setting, And Participants: This cohort study is a biomarker analysis of a multicenter prehospital TBI cohort from the Prehospital Tranexamic Acid Use for TBI clinical trial conducted across 20 centers and 39 emergency medical systems in North America from May 2015 to March 2017.

View Article and Find Full Text PDF
Article Synopsis
  • Tranexamic acid (TXA) is an antifibrinolytic drug effective in reducing mortality from traumatic brain injuries when administered within 2 hours, typically via intravenous (IV) access, which can be challenging to obtain in some settings.
  • This study aimed to compare the total drug exposure of TXA administered through intraosseous (IO) access versus IV access in patients with moderate to severe brain injuries, using data from a prehospital trial.
  • The results included a cohort of 966 participants, with 345 receiving TXA, showing no significant differences in demographics or renal function between those who received TXA via IO or IV access, indicating that both routes might have similar efficacy for drug exposure.
View Article and Find Full Text PDF

Heterogeneous and monolithic integration of the versatile low-loss silicon nitride platform with low-temperature materials such as silicon electronics and photonics, III-V compound semiconductors, lithium niobate, organics, and glasses has been inhibited by the need for high-temperature annealing as well as the need for different process flows for thin and thick waveguides. New techniques are needed to maintain the state-of-the-art losses, nonlinear properties, and CMOS-compatible processes while enabling this next generation of 3D silicon nitride integration. We report a significant advance in silicon nitride integrated photonics, demonstrating the lowest losses to date for an anneal-free process at a maximum temperature 250 °C, with the same deuterated silane based fabrication flow, for nitride and oxide, for an order of magnitude range in nitride thickness without requiring stress mitigation or polishing.

View Article and Find Full Text PDF

Significance: The development of genetically encoded fluorescent indicators of neural activity with millisecond dynamics has generated demand for ever faster two-photon (2P) imaging systems, but acoustic and mechanical beam scanning technologies are approaching fundamental limits. We demonstrate that potassium tantalate niobate (KTN) electro-optical deflectors (EODs), which are not subject to the same fundamental limits, are capable of ultrafast two-dimensional (2D) 2P imaging .

Aim: To determine if KTN-EODs are suitable for 2P imaging, compatible with 2D scanning, and capable of ultrafast imaging of genetically encoded indicators with millisecond dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • Neural circuit function is influenced by how neurons connect and the strength of these connections, which involves postsynaptic sensitivity and presynaptic release probability (P).
  • QuaSOR, a super-resolution imaging method, was developed to measure P at hundreds of synapses simultaneously, focusing on the Drosophila larval neuromuscular junction (NMJ).
  • The study reveals that P varies among synapses linked to the same axon and identifies Complexin as a key protein that modulates both spontaneous and evoked neurotransmitter release, affecting transmission quality through the balance of different presynaptic proteins.
View Article and Find Full Text PDF

We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1.8×10 for times less than 100 s and a flicker noise floor of 1×10 out to 6000 s.

View Article and Find Full Text PDF

Optical frequency standards, or lasers stabilized to atomic or molecular transitions, are widely used in length metrology and laser ranging, provide a backbone for optical communications and lie at the heart of next-generation optical atomic clocks. Here we demonstrate a compact, low-power optical frequency reference based on the Doppler-free, two-photon transition in rubidium-87 at 778 nm implemented on a micro-optics breadboard. Our optical reference achieves a fractional frequency instability of 2.

View Article and Find Full Text PDF

We experimentally demonstrate efficient and broadband supercontinuum generation in nonlinear tantala () waveguides using a 1560 nm femtosecond seed laser. With incident pulse energies as low as 100 pJ, we create spectra spanning up to 1.6 octaves across the visible and infrared.

View Article and Find Full Text PDF

Optical microscopy, owing to its noninvasiveness and subcellular resolution, enables in vivo visualization of neuronal structure and function in the physiological context. Optical-sectioning structured illumination microscopy (OS-SIM) is a widefield fluorescence imaging technique that uses structured illumination patterns to encode in-focus structures and optically sections 3D samples. However, its application to in vivo imaging has been limited.

View Article and Find Full Text PDF

Microresonator-based soliton frequency combs, microcombs, have recently emerged to offer low-noise, photonic-chip sources for applications, spanning from timekeeping to optical-frequency synthesis and ranging. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency combs important to directly probe atoms and molecules, especially in trace gas detection, multiphoton light-atom interactions, and spectroscopy in the extreme ultraviolet. Here, we explore direct microcomb atomic spectroscopy, using a cascaded, two-photon 1529-nm atomic transition in a rubidium micromachined cell.

View Article and Find Full Text PDF

The first Wnt signaling ligand discovered, Wingless [Wg (Wnt1 in mammals)], plays critical roles in neuromuscular junction (NMJ) development, regulating synaptic architecture, and function. Heparan sulfate proteoglycans (HSPGs), consisting of a core protein with heparan sulfate (HS) glycosaminoglycan (GAG) chains, bind to Wg ligands to control both extracellular distribution and intercellular signaling function. HSPGs previously shown to regulate Wg trans-synaptic signaling at the NMJ include the glypican Dally-like protein (Dlp) and perlecan Terribly Reduced Optic Lobes (Trol).

View Article and Find Full Text PDF

Recognition of self-nucleic acids by innate immune receptors can lead to the development of autoimmune and/or autoinflammatory diseases. Elucidating mechanisms associated with dysregulated activation of specific receptors may identify new disease correlates and enable more effective therapies. Here we describe an aggressive in vivo model of Toll-like receptor (TLR) 9 dysregulation, based on bypassing the compartmentalized activation of TLR9 in endosomes, and use it to uncover unique aspects of TLR9-driven disease.

View Article and Find Full Text PDF

Single-molecule localization microscopy (SMLM), while well established for cultured cells, is not yet fully compatible with tissue-scale samples. We introduce single-molecule oblique-plane microscopy (obSTORM), which by directly imaging oblique sections of samples with oblique light-sheet illumination offers a deep and volumetric SMLM platform that is convenient for standard tissue samples and small intact animals. We demonstrate super-resolution imaging at depths of up to 66 µm for cells, Caenorhabditis elegans gonads, Drosophila melanogaster larval brain, mouse retina and brain sections, and whole stickleback fish.

View Article and Find Full Text PDF

Synaptic connections undergo activity-dependent plasticity during development and learning, as well as homeostatic re-adjustment to ensure stability. Little is known about the relationship between these processes, particularly in vivo. We addressed this with novel quantal resolution imaging of transmission during locomotive behavior at glutamatergic synapses of the Drosophila larval neuromuscular junction.

View Article and Find Full Text PDF

Phenotypic diversity is critical to the lifestyles of many microbial species, enabling rapid responses to changes in environmental conditions. In the human fungal pathogen Candida albicans, cells exhibit heritable switching between two phenotypic states, white and opaque, which yield differences in mating, filamentous growth, and interactions with immune cells in vitro. Here, we address the in vivo virulence properties of the two cell states in a zebrafish model of infection.

View Article and Find Full Text PDF

The innate immune system detects diverse microbial species with a limited repertoire of immune receptors that recognize nucleic acids. The cost of this immune surveillance strategy is the potential for inappropriate recognition of self-derived nucleic acids and subsequent autoimmune disease. The relative expression of two closely related receptors, Toll-like receptor (TLR) 7 and TLR9, is balanced to allow recognition of microbial nucleic acids while limiting recognition of self-derived nucleic acids.

View Article and Find Full Text PDF

Circuit mapping requires knowledge of both structural and functional connectivity between cells. Although optical tools have been made to assess either the morphology and projections of neurons or their activity and functional connections, few probes integrate this information. We have generated a family of photoactivatable genetically encoded Ca(2+) indicators that combines attributes of high-contrast photolabeling with high-sensitivity Ca(2+) detection in a single-color protein sensor.

View Article and Find Full Text PDF
Article Synopsis
  • - Spontaneous transmitter release, previously seen as a mere leak, has been found to play a specialized role in shaping neuronal circuits, with distinct mechanisms for spontaneous and evoked transmission at synapses.
  • - Research on Drosophila larval neuromuscular junctions shows that spontaneous and evoked transmissions utilize different sets of glutamate receptors (GluRs) and have minimal spatial overlap between synapses, influenced by the presynaptic protein Brp.
  • - The study concludes that while synapses can engage in both types of transmission, those with high levels of Brp favor evoked transmission and suppress spontaneous release, indicating mechanisms that help synapses specialize in one transmission mode over the other.
View Article and Find Full Text PDF