Publications by authors named "Zachary Nelson"

Article Synopsis
  • Traditional clinical guidelines often mismatch the strength of recommendations with the quality of evidence, prompting the need for improvement in the field of urinary tract infections (UTIs).
  • The objective was to create a comprehensive guideline that aligns evidence and recommendations better, utilizing a systematic review involving 54 experts across 12 countries who analyzed 914 articles on various aspects of UTIs.
  • Only 6 out of 37 questions could be clearly recommended based on strong evidence, while the rest resulted in clinical reviews outlining the risks and benefits of existing approaches.
View Article and Find Full Text PDF

Cells continuously remodel their intracellular proteins with the monosaccharide O-linked N-acetylglucosamine (O-GlcNAc) to regulate metabolism, signaling, and stress. This protocol describes the use of GlycoID tools to capture O-GlcNAc dynamics in live cells. GlycoID constructs contain an O-GlcNAc binding domain linked to a proximity labeling domain and a subcellular localization sequence.

View Article and Find Full Text PDF

Cells continuously fine-tune signaling pathway proteins to match nutrient and stress levels in their local environment by modifying intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) sugars, an essential process for cell survival and growth. The small size of these monosaccharide modifications poses a challenge for functional determination, but the chemistry and biology communities have together created a collection of precision tools to study these dynamic sugars. This review presents the major themes by which O-GlcNAc influences signaling pathway proteins, including G-protein coupled receptors, growth factor signaling, mitogen-activated protein kinase (MAPK) pathways, lipid sensing, and cytokine signaling pathways.

View Article and Find Full Text PDF

The assessment of instructional quality has been and continues to be a desirable, yet difficult endeavor in higher education. The development of new teaching evaluation frameworks along with instruments to measure various aspects of teaching practices holds promise. The challenge rests in the implementation of these frameworks and measures in authentic settings.

View Article and Find Full Text PDF

A fundamental mechanism that all eukaryotic cells use to adapt to their environment is dynamic protein modification with monosaccharide sugars. In humans, O-linked -acetylglucosamine (O-GlcNAc) is rapidly added to and removed from diverse protein sites as a response to fluctuating nutrient levels, stressors, and signaling cues. Two aspects remain challenging for tracking functional O-GlcNAc events with chemical strategies: spatial control over subcellular locations and time control during labeling.

View Article and Find Full Text PDF

Faraday rotation is a magneto-optical effect central to a number of commercial technologies including optical isolation and magneto-optical imaging. Today, the performance needs of these technologies are met by inorganic materials containing paramagnetic heavy elements. However, organic thin films are increasingly being evaluated as replacement materials, promising higher magneto-optical performance and facile fabrication of structures that enable expanded applications.

View Article and Find Full Text PDF

The use of molecules as active components to build nanometer-scale devices inspires emerging device concepts that employ the intrinsic functionality of molecules to address longstanding challenges facing nanoelectronics. Using molecules as controllable-length nanosprings, here we report the design and operation of a nanoelectromechanical (NEM) switch which overcomes the typical challenges of high actuation voltages and slow switching speeds for previous NEM technologies. Our NEM switches are hierarchically assembled using a molecular spacer layer sandwiched between atomically smooth electrodes, which defines a nanometer-scale electrode gap and can be electrostatically compressed to repeatedly modulate the tunneling current.

View Article and Find Full Text PDF

The spread of the COVID-19 pandemic around the world has revealed that it is urgently important to develop rapid and inexpensive assays for antibodies in general and anti-SARS-CoV-2 IgG antibody (anti-SARS-CoV-2 spike glycoprotein S1 antibody) in particular. Herein we report a method to detect the anti-SARS-CoV-2 spike antibody level by using Janus emulsions or Janus particles as biosensors. Janus emulsions are composed of two immiscible hydrocarbon and fluorocarbon oils.

View Article and Find Full Text PDF

Documented penicillin allergies have been associated with an increased risk of adverse outcomes. The goal of this project was to assess the effectiveness and feasibility of a pharmacist-led penicillin allergy "de-labeling" process that does not involve labor-intensive skin testing or direct oral challenges. Adult patients with penicillin allergies were identified and interviewed by an infectious diseases pharmacy resident during a 3-month pilot period.

View Article and Find Full Text PDF

The Faraday effect is a magneto-optical (MO) phenomenon that causes the plane of linearly polarized light to rotate when passing through a medium subjected to a parallel magnetic field. Informed by the established quantum mechanical model developed by Buckingham and Stephens, we sought to identify molecules that would exhibit large MO responses. Magnetic circular dichroism studies of ferrocenium in the 1970s revealed its potential as an MO material; however, it has not been evaluated in the context of Faraday rotation and thin-film optical applications.

View Article and Find Full Text PDF

The magneto-optical phenomenon known as Faraday rotation involves the rotation of plane-polarized light as it passes through an optical medium in the presence of an external magnetic field oriented parallel to the direction of light propagation. Faraday rotators find applications in optical isolators and magnetic-field imaging technologies. In recent years, organic thin films comprised of polymeric and small-molecule chromophores have demonstrated Verdet constants, which measure the magnitude of rotation at a given magnetic field strength and material thickness, that exceed those found in conventional inorganic crystals.

View Article and Find Full Text PDF

Here we report a sensing method for based on the agglutination of all-liquid Janus emulsions. This two-dye assay enables the rapid detection of trace in less than 2 h via an emissive signal produced in response to binding. The biorecognition interface between the Janus emulsions is assembled by attaching antibodies to a functional surfactant polymer with a tetrazine/transcyclooctene click reaction.

View Article and Find Full Text PDF

Bimetallic iron-nickel-based nanocatalysts are perhaps the most active for the oxygen evolution reaction (OER) in alkaline electrolytes. Recent developments in literature have suggested that the ratio of iron and nickel in Fe-Ni thin films plays an essential role in the performance and stability of the catalysts. In this work, the metallic ratio of iron to nickel was tested in alloy bimetallic nanoparticles.

View Article and Find Full Text PDF

Urine drug screening has become standard of care in many medical practice settings to assess compliance, detect misuse, and/or to provide basis for medical or legal action. The antibody-based enzymatic immunoassays used for qualitative analysis of urine have significant drawbacks that clinicians are often not aware of. Recent literature suggests that there is a lack of understanding of the shortcomings of these assays by clinicians who are ordering and/or interpreting them.

View Article and Find Full Text PDF

Carbonylation catalysts for the desymmetrization of meso-epoxides yielding enantioenriched trans-β-lactones are reported. Fine-tuning the electronic properties of the ligand further improved enantioselectivity. The sterics of the substrate dictated whether a given electronic variation decreased or increased enantioenrichment, revealing an unexpected relationship between the substrate's steric environment and the electronic nature of the optimal catalyst.

View Article and Find Full Text PDF

We review the way in which atomic tetrahedra composed of metallic elements pack naturally into fused icosahedra. Orthorhombic, hexagonal, and cubic intermetallic crystals based on this packing are all shown to be united in having pseudo-fivefold rotational diffraction symmetry. A unified geometric model involving the 600-cell is presented: the model accounts for the observed pseudo-fivefold symmetries among the different Bravais lattice types.

View Article and Find Full Text PDF

Past research has examined the relationships between personality variables and workplace accidents; however, few studies have examined these relationships using the Five Factor Model of personality and trait-state relationships have not been examined in this context. The present study was undertaken to examine the relationships between personality characteristics based on the Five Factor Model, workplace accidents, and self-efficacy. To examine these relationships, personality, workplace accident, and self-efficacy data were collected from 202 undergraduate volunteers (134 women and 68 men) at a large midwestern urban university.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session41u63br4cpulqvobo1k4fd2b6ivbpps4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once