Publications by authors named "Zachary Michaelson"

The Hedgehog (Hh) signaling pathway is fundamental to embryogenesis, tissue homeostasis, and cancer. Hh signals are transduced via an unusual mechanism: upon agonist-induced phosphorylation, the noncanonical G protein-coupled receptor SMOOTHENED (SMO) binds the catalytic subunit of protein kinase A (PKA-C) and physically blocks its enzymatic activity. By combining computational structural approaches with biochemical and functional studies, we show that SMO mimics strategies prevalent in canonical GPCR and PKA signaling complexes, despite little sequence or secondary structural homology.

View Article and Find Full Text PDF
Article Synopsis
  • - During Hedgehog (Hh) signaling, the SMOOTHENED (SMO) receptor interacts with GLI transcription factors by blocking the activity of a key enzyme, protein kinase A (PKA-C).
  • - The study reveals that GPCR kinase 2 (GRK2) moves to the primary cilium upon SMO activation, leading to SMO phosphorylation and facilitating its direct interaction with PKA-C.
  • - This research highlights the essential role of GRK2 in Hh signaling, suggesting that GRKs may be important for direct interactions between GPCRs and other cellular proteins.
View Article and Find Full Text PDF

During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous Hh pathway activation in the vertebrate primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction.

View Article and Find Full Text PDF