Herein, we introduce a new platform for alkene carboxy-alkylation. This reaction is designed around CO addition to alkenes followed by radical polar crossover, which enables alkylation through carbanion attack on carbonyl electrophiles. We discovered that CO adds to alkenes faster than it reduces carbonyl electrophiles and that this reactivity can be exploited by accessing CO via hydrogen atom transfer from formate.
View Article and Find Full Text PDFA detailed mechanistic study of the -selective allylic functionalization via thianthrenium salts is presented. Kinetic analyses, deuterium labeling experiments, and computational methods are used to rationalize the observed reactivity and selectivity. We find that the reaction proceeds via a rate-determining and stereodetermining allylic deprotonation of an alkenylthianthrenium species.
View Article and Find Full Text PDFOxidative alkene functionalization reactions are a fundamental class of complexity-building organic transformations. However, the majority of established approaches rely on electrophilic reagents that limit the diversity of groups that can be installed. Recent advances have established a new approach that instead relies on the transformation of alkenes into thianthrene-derived cationic electrophiles.
View Article and Find Full Text PDFHerein, we report a new class of electrophotocatalysts, polycyclic aromatic hydrocarbons, that promote the reduction of unactivated carbonyl compounds to generate versatile ketyl radical intermediates. This catalytic platform enables previously challenging intermolecular ketyl radical coupling reactions, including those that classic reductants (e.g.
View Article and Find Full Text PDFThe rapid preparation of complex three-dimensional (3D) heterocyclic scaffolds is a key challenge in modern medicinal chemistry. Despite the increased probability of clinical success for small molecule therapeutic candidates with increased 3D complexity, new drug targets remain dominated by flat molecules due to the abundance of coupling reactions available for their construction. In principle, heteroarene hydrofunctionalization reactions offer an opportunity to transform readily accessible planar molecules into more three-dimensionally complex analogs through the introduction of a single molecular vector.
View Article and Find Full Text PDFHerein we disclose a strategy to promote the hydrocarboxylation of unactivated alkenes using photochemical activation of formate salts. We illustrate that an alternative initiation mechanism circumvents the limitations of prior approaches and enables hydrocarboxylation of this challenging substrate class. Specifically, we found that accessing the requisite thiyl radical initiator without an exogenous chromophore eliminates major byproducts that have plagued attempts to exploit similar reactivity for unactivated alkene substrates.
View Article and Find Full Text PDFModular strategies to rapidly increase molecular complexity have proven immensely synthetically valuable. In principle, transformation of an alkene into a dielectrophile presents an opportunity to deliver two unique nucleophiles across an alkene. Unfortunately, the selectivity profiles of known dielectrophiles have largely precluded this deceptively simple synthetic approach.
View Article and Find Full Text PDFCyclopropanes are desirable structural motifs with valuable applications in drug discovery and beyond. Established alkene cyclopropanation methods give rise to cyclopropanes with a limited array of substituents, are difficult to scale, or both. Herein, we disclose a new cyclopropane synthesis through the formal coupling of abundant carbon pronucleophiles and unactivated alkenes.
View Article and Find Full Text PDFHerein, we describe a practical protocol for the removal of alcohol functional groups through reductive cleavage of their benzoate ester analogs. This transformation requires a strong single electron transfer (SET) reductant and a means to accelerate slow fragmentation following substrate reduction. To accomplish this, we developed a photocatalytic system that generates a potent reductant from formate salts alongside Brønsted or Lewis acids that promote fragmentation of the reduced intermediate.
View Article and Find Full Text PDFAllylic amines are valuable synthetic targets en route to diverse biologically active amine products. Current allylic C-H amination strategies remain limited with respect to the viable -substituents. Herein, we disclose a new electrochemical process to prepare aliphatic allylic amines by coupling two abundant starting materials: secondary amines and unactivated alkenes.
View Article and Find Full Text PDFHerein we disclose a new photochemical process to prepare carboxylic acids from formate salts and alkenes. This redox-neutral hydrocarboxylation proceeds in high yields across diverse functionalized alkene substrates with excellent regioselectivity. This operationally simple procedure can be readily scaled in batch at low photocatalyst loading (0.
View Article and Find Full Text PDFHerein, we disclose that electrochemical stimulation induces new photocatalytic activity from a range of structurally diverse conventional photocatalysts. These studies uncover a new electron-primed photoredox catalyst capable of promoting the reductive cleavage of strong C(sp )-N and C(sp )-O bonds. We illustrate several examples of the synthetic utility of these deeply reducing but otherwise safe and mild catalytic conditions.
View Article and Find Full Text PDFWe describe a photocatalytic system that elicits potent photoreductant activity from conventional photocatalysts by leveraging radical anion intermediates generated . The combination of an isophthalonitrile photocatalyst and sodium formate promotes diverse aryl radical coupling reactions from abundant but difficult to reduce aryl chloride substrates. Mechanistic studies reveal two parallel pathways for substrate reduction both enabled by a key terminal reductant byproduct, carbon dioxide radical anion.
View Article and Find Full Text PDFAziridines-three-membered nitrogen-containing cyclic molecules-are important synthetic targets. Their substantial ring strain and resultant proclivity towards ring-opening reactions makes them versatile precursors of diverse amine products, and, in some cases, the aziridine functional group itself imbues important biological (for example, anti-tumour) activity. Transformation of ubiquitous alkenes into aziridines is an attractive synthetic strategy, but is typically accomplished using electrophilic nitrogen sources rather than widely available amine nucleophiles.
View Article and Find Full Text PDFGenerality in asymmetric catalysis can be manifested in dramatic and valuable ways, such as high enantioselectivity across a wide assortment of substrates in a given reaction (broad substrate scope) or as applicability of a given chiral framework across a variety of mechanistically distinct reactions (privileged catalysts). Reactions and catalysts that display such generality hold special utility, because they can be applied broadly and sometimes even predictably in new applications. Despite the great value of such systems, the factors that underlie generality are not well understood.
View Article and Find Full Text PDFWe describe a photocatalytic system that reveals latent photooxidant behavior from one of the most reducing conventional photoredox catalysts, -phenylphenothiazine (). This aerobic photochemical reaction engages difficult to oxidize feedstocks, such as benzene, in C(sp)-N coupling reactions through direct oxidation. Mechanistic studies are consistent with activation of via photooxidation and with Lewis acid cocatalysts scavenging inhibitors inextricably formed in this process.
View Article and Find Full Text PDFA precisely designed chiral squaramide derivative is shown to promote the highly enantioselective addition of trimethylsilyl bromide (TMSBr) to a broad variety of 3-substituted and 3,3-disubstituted oxetanes. The reaction provides direct and general access to synthetically valuable 1,3-bromohydrin building blocks from easily accessed achiral precursors. The products are readily elaborated both by nucleophilic substitution and through transition-metal-catalyzed cross-coupling reactions.
View Article and Find Full Text PDFAn aldehyde-selective Wacker-type oxidation of allylic fluorides proceeds with a nitrite catalyst. The method represents a direct route to prepare β-fluorinated aldehydes. Allylic fluorides bearing a variety of functional groups are transformed in high yield and very high regioselectivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2015
A stereoselective synthesis of anti-1,2-diols has been developed using a multitasking Ru catalyst in an assisted tandem catalysis protocol. A cyclometalated Ru complex catalyzes first a Z-selective cross-metathesis of two terminal olefins, followed by a stereospecific dihydroxylation. Both steps are catalyzed by Ru, as the Ru complex is converted to a dihydroxylation catalyst upon addition of NaIO4.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2015
Catalytic nitrite was found to enable carbon-oxygen bond-forming reductive elimination from unstable alkyl palladium intermediates, providing dioxygenated products from alkenes. A variety of functional groups were tolerated, and high yields (up to 94 %) were observed with many substrates, also for a multigram-scale reaction. Nitrogen dioxide, which could form from nitrite under the reaction conditions, was demonstrated to be a potential intermediate in the catalytic cycle.
View Article and Find Full Text PDFWe present a practical trifluoromethyl-directed Wacker-type oxidation of internal alkenes that enables rapid access to β-trifluoromethyl-substituted ketones. Allylic trifluoromethyl-substituted alkenes bearing a wide range of functional groups can be oxidized in high yield and regioselectivity. The distance dependence of the regioselectivity was established by systematic variation of the number of methylene units between the double bond and the trifluoromethyl group.
View Article and Find Full Text PDFThe aldehyde-selective oxidation of alkenes bearing diverse oxygen groups in the allylic and homoallylic position was accomplished with a nitrite-modified Wacker oxidation. Readily available oxygenated alkenes were oxidized in up to 88% aldehyde yield and as high as 97% aldehyde selectivity. The aldehyde-selective oxidation enabled the rapid, enantioselective synthesis of an important pharmaceutical agent, atomoxetine.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2013
Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. (18) O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.
View Article and Find Full Text PDF