During replication, RNA viruses accumulate genome alterations, such as mutations and deletions. The interactions between individual variants can determine the fitness of the virus population and, thus, the outcome of infection. To investigate the effects of defective interfering genomes (DI) on wild-type (WT) poliovirus replication, we developed an ordinary differential equation model, which enables exploring the parameter space of the WT and DI competition.
View Article and Find Full Text PDFtransmit pathogenic arboviruses while the mosquito itself tolerates the infection. We examine a piRNA-based immunity that relies on the acquisition of viral derived cDNA (vDNA) and how this pathway discriminates between self and non-self. The piRNAs derived from these vDNAs are essential for virus control and Piwi4 has a central role in the pathway.
View Article and Find Full Text PDFAnnu Rev Virol
September 2018
RNA viruses are unique in their evolutionary capacity, exhibiting high mutation rates and frequent recombination. They rapidly adapt to environmental changes, such as shifts in immune pressure or pharmacological challenge. The evolution of RNA viruses has been brought into new focus with the recent developments of genetic and experimental tools to explore and manipulate the evolutionary dynamics of viral populations.
View Article and Find Full Text PDFThe deterministic force of natural selection and stochastic influence of drift shape RNA virus evolution. New deep-sequencing and microfluidics technologies allow us to quantify the effect of mutations and trace the evolution of viral populations with single-genome and single-nucleotide resolution. Such experiments can reveal the topography of the genotype-fitness landscapes that shape the path of viral evolution.
View Article and Find Full Text PDFThe Aedes aegypti mosquito transmits arboviruses, including dengue, chikungunya, and Zika virus. Understanding the mechanisms underlying mosquito immunity could provide new tools to control arbovirus spread. Insects exploit two different RNAi pathways to combat viral and transposon infection: short interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) [1, 2].
View Article and Find Full Text PDFWith the enormous sizes viral populations reach, many variants are at too low a frequency to be detected by conventional next-generation sequencing (NGS) methods. Circular sequencing (CirSeq) is a method by which the error rate of next-generation sequencing is decreased so that even low-frequency viral variants can be accurately detected. The ability to visualize almost the entire genetic makeup of a viral swarm has implications for epidemiology, viral evolution, and vaccine design.
View Article and Find Full Text PDFOocytes are stockpiled with proteins and mRNA that are required to drive the initial mitotic divisions of embryogenesis. But are there proteins specific to meiosis whose levels must be decreased to begin embryogenesis properly? The Drosophila protein Cortex (Cort) is a female, meiosis-specific activator of the Anaphase Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase. We performed immunoprecipitation of Cortex followed by mass spectrometry, and identified the Polo kinase inhibitor Matrimony (Mtrm) as a potential interactor with Cort.
View Article and Find Full Text PDF