Publications by authors named "Zachary J Frangos"

Glycine Transporter 2 (GlyT2) inhibitors have shown considerable potential as analgesics for the treatment of neuropathic pain but also display considerable side effects. One potential source of side effects is irreversible inhibition. In this study, we have characterized the mechanism of ORG25543 inhibition of GlyT2 by first considering three potential ligand binding sites on GlyT2-the substrate site, the vestibule allosteric site and the lipid allosteric site.

View Article and Find Full Text PDF

Chronic pain is a complex condition that remains resistant to current therapeutics. We previously synthesized a series of -acyl amino acids (NAAAs) that inhibit the glycine transporter, GlyT2, some of which are also positive allosteric modulators of glycine receptors (GlyRs). In this study, we have synthesized a library of NAAAs that contain a phenylene ring within the acyl tail with the objective of improving efficacy at both GlyT2 and GlyRs and also identifying compounds that are efficacious as dual-acting modulators to enhance glycine neurotransmission.

View Article and Find Full Text PDF

Membrane cholesterol binds to and modulates the function of various SLC6 neurotransmitter transporters, including stabilizing the outward-facing conformation of the dopamine and serotonin transporters. Here, we investigate how cholesterol binds to GlyT2 (SLC6A5), modulates glycine transport rate, and influences bioactive lipid inhibition of GlyT2. Bioactive lipid inhibitors are analgesics that bind to an allosteric site accessible from the extracellular solution when GlyT2 adopts an outward-facing conformation.

View Article and Find Full Text PDF

Neurotransmitter sodium symporters (NSS) are a subfamily of SLC6 transporters responsible for regulating neurotransmitter signalling. They are a major target for psychoactive substances including antidepressants and drugs of abuse, prompting substantial research into their modulation and structure-function dynamics. Recently, a series of allosteric transport inhibitors have been identified, which may reduce side effect profiles, compared to orthosteric inhibitors.

View Article and Find Full Text PDF

The role of lipids in modulating membrane protein function is an emerging and rapidly growing area of research. The rational design of lipids that target membrane proteins for the treatment of pathological conditions is a novel extension in this field and provides a step forward in our understanding of membrane transporters. Bioactive lipids show considerable promise as analgesics for the treatment of chronic pain and bind to a high-affinity allosteric-binding site on the human glycine transporter 2 (GlyT2 or SLC6A5).

View Article and Find Full Text PDF

The treatment of chronic pain is poorly managed by current analgesics, and there is a need for new classes of drugs. We recently developed a series of bioactive lipids that inhibit the human glycine transporter GlyT2 (SLC6A5) and provide analgesia in animal models of pain. Here, we have used functional analysis of mutant transporters combined with molecular dynamics simulations of lipid-transporter interactions to understand how these bioactive lipids interact with GlyT2.

View Article and Find Full Text PDF

Inhibitors that target the glycine transporter 2, GlyT2, show promise as analgesics, but may be limited by their toxicity through complete or irreversible binding. Acyl-glycine inhibitors, however, are selective for GlyT2 and have been shown to provide analgesia in animal models of pain with minimal side effects, but are comparatively weak GlyT2 inhibitors. Here, we modify the simple acyl-glycine by synthesizing lipid analogues with a range of amino acid head groups in both l- and d-configurations, to produce nanomolar affinity, selective GlyT2 inhibitors.

View Article and Find Full Text PDF