Publications by authors named "Zachary J Cannizzo"

Article Synopsis
  • Morphological traits can help predict the diet and trophic position of species, particularly in how gut size varies among closely related animals.
  • Crabs with larger stomachs tend to be herbivorous or consume low-quality diets, and external markings on their carapaces correlate with gut size.
  • The study found that these markings can be used as a non-lethal method to estimate dietary strategies in crabs, revealing insights into their evolution and morphological tradeoffs.
View Article and Find Full Text PDF

Many animals have flexible morphological traits that allow them to succeed in differing circumstances with differing diets available to them. For brachyuran crabs, claw height and gut size are diet-specific and largely reflect foraging strategies, while abdomen width reflects relative levels of fecundity. However, the link between claw size and diet has largely been documented only for primarily carnivorous crabs, while the link between diet and fecundity is strong in herbivorous crabs.

View Article and Find Full Text PDF

Two common strategies organisms use to finance reproduction are capital breeding (using energy stored prior to reproduction) and income breeding (using energy gathered during the reproductive period). Understanding which of these two strategies a species uses can help in predicting its population dynamics and how it will respond to environmental change. Brachyuran crabs have historically been considered capital breeders as a group, but recent evidence has challenged this assumption.

View Article and Find Full Text PDF

When a range-shifting species colonizes an ecosystem it has not previously inhabited, it may experience suboptimal conditions that challenge its continued persistence and expansion. Some impacts may be partially mitigated by artificial habitat analogues: artificial habitats that more closely resemble a species' historic ecosystem than the surrounding habitat. If conditions provided by such habitats increase reproductive success, they could be vital to the expansion and persistence of range-shifting species.

View Article and Find Full Text PDF

As the geographic ranges of tropical species and ecosystems continue to shift poleward with climate change, it is critical to prediction and management to identify factors that facilitate these expansions. This is especially true for range shifts that involve the decoupling of a shifting species from its historic ecosystem and the colonization of an ecosystem that it has not previously inhabited (i.e.

View Article and Find Full Text PDF

Individual characteristics often scale allometrically with organismal body size and the form of this scaling can be influenced by ecological and evolutionary factors. Examining the specific form of this scaling can therefore yield important insights into organismal ecology and evolution and the ability of organisms to respond to future environmental changes. We examine the intraspecific allometric scaling of stomach volume with body mass for 17 species of brachyuran crabs.

View Article and Find Full Text PDF

Many species are shifting their ranges in response to the changing climate. In cases where such shifts lead to the colonization of a new ecosystem, it is critical to establish how the shifting species itself is impacted by novel environmental and biological interactions. Anthropogenic habitats that are analogous to the historic habitat of a shifting species may play a crucial role in the ability of that species to expand or persist in suboptimal colonized ecosystems.

View Article and Find Full Text PDF

Ecosystem engineers alter environments by creating, modifying or destroying habitats. The indirect impacts of ecosystem engineering on trophic interactions should depend on the combination of the spatial distribution of engineered structures and the foraging behaviour of consumers that use these structures as refuges. In this study, we assessed the indirect effects of ecosystem engineering by a wood-boring beetle in a neotropical mangrove forest system.

View Article and Find Full Text PDF