Publications by authors named "Zachary Hicks"

The selective dehydrogenation of hydrocarbons and their functionalized derivatives is a promising pathway in the realization of endothermic fuel systems for powering important technologies such as hypersonic aircraft. The recent surge in interest in single atom catalysts (SACs) over the past decade offers the opportunity to achieve the ultimate levels of selectivity through the subnanoscale design tailoring of novel catalysts. Experimental techniques capable of investigating the fundamental nature of the active sites of novel SACs in well-controlled model studies offer the chance to reveal promising insights.

View Article and Find Full Text PDF

The combustion mechanism of [AlCp*] (Cp* = pentamethylcyclopentadienyl), a ligated aluminum(I) cluster, was studied by a combination of experimental and theoretical methods. Two complementary experimental methods, temperature-programmed reaction and T-jump time-of-flight mass spectrometry, were used to investigate the decomposition behaviors of [AlCp*] in both anaerobic and oxidative environments, revealing AlCp* and AlOCp* to be the major decomposition products. The observed product distribution and reaction pathways are consistent with the prediction from molecular dynamics simulations and static density functional theory calculations.

View Article and Find Full Text PDF

The adsorption and decomposition of dimethyl methylphosphonate (DMMP), a chemical warfare agent (CWA) simulant, on size-selected molybdenum oxide trimer clusters, i.e. (MoO), was studied both experimentally and theoretically.

View Article and Find Full Text PDF

Additives to hydrocarbon fuels are commonly explored to change the combustion dynamics, chemical distribution, and/or product integrity. Here we employ a novel aluminum-based molecular additive, Al(I) tetrameric cluster [AlBrNEt3]4 (Et = C2H5), to a hydrocarbon fuel and evaluate the resultant single-droplet combustion properties. This Al4 cluster offers a soluble alternative to nanoscale particulate additives that have recently been explored and may mitigate the observed problems of particle aggregation.

View Article and Find Full Text PDF