Pervasive genetic overlap across human complex traits necessitates developing multivariate methods that can parse pleiotropic and trait-specific genetic signals. Here, we introduce Genomic Network Analysis (GNA), an analytic framework that applies the principles of network modelling to estimates of genetic overlap derived from genome-wide association study (GWAS) summary statistics. The result is a genomic network that describes the conditionally independent genetic associations between traits that remain when controlling for shared signal with the broader network of traits.
View Article and Find Full Text PDFMitochondrial dysfunction plays an important role in Parkinson's disease (PD), with mitochondrial DNA copy number (mtDNA-CN) emerging as a potential marker for mitochondrial health. We investigated the links between blood mtDNA-CN and PD severity and risk using the Accelerating Medicines Partnership program for Parkinson's Disease dataset, replicating our results in the UK Biobank. Our findings reveal that reduced blood mtDNA-CN levels are associated with heightened PD risk and increased severity of motor symptoms and olfactory dysfunction.
View Article and Find Full Text PDFAlthough harmful substance use is common and represented by shared symptom features and high genetic correlations, the underlying genetic relationships between substance use traits have not been fully explored. We have investigated the genetic architecture of substance use traits through exploratory and confirmatory factor analyses using genomic structural equation modeling (Genomic SEM), and explored genetic correlations between different aspects of substance use and mental health-related traits. Genomic SEM was used to identify latent factors representing the relationships between 14 substance use traits (alcohol, nicotine, cannabis and opioid use), and to confirm or modify existing latent factors for 38 mental health-related traits.
View Article and Find Full Text PDFSubstance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders.
View Article and Find Full Text PDFRetinol is a fat-soluble vitamin that plays an essential role in many biological processes throughout the human lifespan. Here, we perform the largest genome-wide association study (GWAS) of retinol to date in up to 22,274 participants. We identify eight common variant loci associated with retinol, as well as a rare-variant signal.
View Article and Find Full Text PDFBackground: Traumatic experiences are associated with increased risk for major depressive disorder (MDD). This study sought to determine the extent that trauma exposure, depression polygenic risk scores (PRS), and their interaction are associated with MDD and individual depression symptoms.
Methods: Data from 102,182 individuals from the large-scale UK Biobank population cohort was analysed.
Migraine is a highly common and debilitating disorder that often affects individuals in their most productive years of life. Previous studies have identified both genetic variants and brain morphometry differences associated with migraine risk. However, the relationship between migraine and brain morphometry has not been examined on a genetic level, and the causal nature of the association between brain structure and migraine risk has not been determined.
View Article and Find Full Text PDFBackground: Global genetic correlation analysis has provided valuable insight into the shared genetic basis between psychiatric and substance use disorders. However, little is known about which regions disproportionately contribute to the global correlation.
Methods: We used Local Analysis of [co]Variant Annotation to calculate bivariate local genetic correlations across 2495 approximately equal-sized, semi-independent genomic regions for 20 psychiatric and substance use phenotypes.
Genome-wide association studies (GWASs) have identified thousands of risk loci for psychiatric and substance use phenotypes, however the biological consequences of these loci remain largely unknown. We performed a transcriptome-wide association study of 10 psychiatric disorders and 6 substance use phenotypes (GWAS sample size range, N = 9725-807,553) using expression quantitative trait loci data from 532 prefrontal cortex samples. We estimated the correlation of genetically regulated expression between phenotype pairs, and compared the results with the genetic correlations.
View Article and Find Full Text PDFBackground And Objectives: To integrate genome-wide association study data with tissue-specific gene expression information to identify coexpression networks, biological pathways, and drug repositioning candidates for Alzheimer disease.
Methods: We integrated genome-wide association summary statistics for Alzheimer disease with tissue-specific gene coexpression networks from brain tissue samples in the Genotype-Tissue Expression study. We identified gene coexpression networks enriched with genetic signals for Alzheimer disease and characterized the associated networks using biological pathway analysis.
Brain network hubs are both highly connected and highly inter-connected, forming a critical communication backbone for coherent neural dynamics. The mechanisms driving this organization are poorly understood. Using diffusion-weighted magnetic resonance imaging in twins, we identify a major role for genes, showing that they preferentially influence connectivity strength between network hubs of the human connectome.
View Article and Find Full Text PDFDepression and anxiety are highly prevalent and comorbid psychiatric traits that cause considerable burden worldwide. Here we use factor analysis and genomic structural equation modelling to investigate the genetic factor structure underlying 28 items assessing depression, anxiety and neuroticism, a closely related personality trait. Symptoms of depression and anxiety loaded on two distinct, although highly genetically correlated factors, and neuroticism items were partitioned between them.
View Article and Find Full Text PDFMotivation: Genome-wide association studies have successfully identified multiple independent genetic loci that harbour variants associated with human traits and diseases, but the exact causal genes are largely unknown. Common genetic risk variants are enriched in non-protein-coding regions of the genome and often affect gene expression (expression quantitative trait loci, eQTL) in a tissue-specific manner. To address this challenge, we developed a methodological framework, E-MAGMA, which converts genome-wide association summary statistics into gene-level statistics by assigning risk variants to their putative genes based on tissue-specific eQTL information.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
April 2021
Genome-wide association studies have identified multiple genetic risk factors underlying susceptibility to substance use, however, the functional genes and biological mechanisms remain poorly understood. The discovery and characterization of risk genes can be facilitated by the integration of genome-wide association data and gene expression data across biologically relevant tissues and/or cell types to identify genes whose expression is altered by DNA sequence variation (expression quantitative trait loci; eQTLs). The integration of gene expression data can be extended to the study of genetic co-expression, under the biologically valid assumption that genes form co-expression networks to influence the manifestation of a disease or trait.
View Article and Find Full Text PDFIntroduction: Genome-wide association studies (GWAS) have successfully identified multiple independent genetic loci that harbour variants associated with Alzheimer's disease, but the exact causal genes and biological pathways are largely unknown.
Methods: To prioritise likely causal genes associated with Alzheimer's disease, we used S-PrediXcan to integrate expression quantitative trait loci (eQTL) from the Genotype-Tissue Expression (GTEx) study and CommonMind Consortium (CMC) with Alzheimer's disease GWAS summary statistics. We meta-analysed the GTEx results using S-MultiXcan, prioritised disease-implicated loci using a computational fine-mapping approach, and performed a biological pathway analysis on the gene-based results.
Background: Little is known about the functional mechanisms through which genetic loci associated with substance use traits ascertain their effect. This study aims to identify and functionally annotate loci associated with substance use traits based on their role in genetic regulation of gene expression.
Methods: We evaluated expression Quantitative Trait Loci (eQTLs) from 13 brain regions and whole blood of the Genotype-Tissue Expression (GTEx) database, and from whole blood of the Depression Genes and Networks (DGN) database.