The idea that a material can exhibit negative compressibility is highly consequential for research and applications. As new forms for this effect are discovered, it is important to examine the range of possible mechanisms and ways to design them into mechanical metamaterials.
View Article and Find Full Text PDFLocalized phenomena abound in nature and throughout the physical sciences. Some universal mechanisms for localization have been characterized, such as in the snaking bifurcations of localized steady states in pattern-forming partial differential equations. While much of this understanding has been targeted at steady states, recent studies have noted complex dynamical localization phenomena in systems of coupled oscillators.
View Article and Find Full Text PDFExternal flows of energy, entropy, and matter can cause sudden transitions in the stability of biological and industrial systems, fundamentally altering their dynamical function. How might we control and design these transitions in chemical reaction networks? Here, we analyze transitions giving rise to complex behavior in random reaction networks subject to external driving forces. In the absence of driving, we characterize the uniqueness of the steady state and identify the percolation of a giant connected component in these networks as the number of reactions increases.
View Article and Find Full Text PDFUnderstanding the relationship between symmetry breaking, system properties, and instabilities has been a problem of longstanding scientific interest. Symmetry-breaking instabilities underlie the formation of important patterns in driven systems, but there are many instances in which such instabilities are undesirable. Using parametric resonance as a model process, here we show that a range of states that would be destabilized by symmetry-breaking instabilities can be preserved and stabilized by the introduction of suitable system asymmetry.
View Article and Find Full Text PDFSynchronization is a widespread phenomenon observed in physical, biological, and social networks, which persists even under the influence of strong noise. Previous research on oscillators subject to common noise has shown that noise can actually facilitate synchronization, as correlations in the dynamics can be inherited from the noise itself. However, in many spatially distributed networks, such as the mammalian circadian system, the noise that different oscillators experience can be effectively uncorrelated.
View Article and Find Full Text PDFThe defining property of chimera states is the coexistence of coherent and incoherent domains in systems that are structurally and spatially homogeneous. The recent realization that such states might be common in oscillator networks raises the question of whether an analogous phenomenon can occur in continuous media. Here, we show that chimera states can exist in continuous systems even when the coupling is strictly local, as in many fluid and pattern forming media.
View Article and Find Full Text PDFWhen tensioned, ordinary materials expand along the direction of the applied force. Here, we explore network concepts to design metamaterials exhibiting negative compressibility transitions, during which a material undergoes contraction when tensioned (or expansion when pressured). Continuous contraction of a material in the same direction of an applied tension, and in response to this tension, is inherently unstable.
View Article and Find Full Text PDF