Quaternary ammonium compounds have served as a first line of protection for human health as surface disinfectants and sanitizers for nearly a century. However, increasing levels of bacterial resistance have spurred the development of novel QAC architectures. In light of the observed reduction in eukaryotic cell toxicity when the alkyl chains on QACs are shorter in nature (≤10 C), we prepared 47 QAC architectures that bear multiple short alkyl chains appended to up to three cationic groups, thus rendering them "bushy-tailed" multiQACs.
View Article and Find Full Text PDFQuaternary ammonium compounds (QACs) serve as a first line of defense against infectious pathogens. As resistance to QACs emerges in the environment, the development of next-generation disinfectants is of utmost priority for human health. Balancing antibacterial potency with environmental considerations is required to effectively counter the development of bacterial resistance.
View Article and Find Full Text PDFOver the past decades, the shortcomings of established quaternary ammonium disinfectants have become increasingly clear. Although benzalkonium chloride (BAC) has enjoyed nearly a century of significantly protecting human health through surgical preparation, home use, and industrial applications, increasing levels of bacterial resistance have rendered it decreasingly effective. In light of more recent efforts that have informed us that multicationic amphiphilic disinfectants show both higher activity as well as diminished susceptibility to resistance, we embarked on the preparation of 27 multicationic QACs in an attempt to clearly document structure-activity relationships of next-generation BAC structures.
View Article and Find Full Text PDF