Auditory/visual (A/V) cues can trigger urgency in some individuals with overactive bladder (OAB), and patient-reported bladder sensation can be characterized during non-invasive oral hydration studies. The aim of this investigation was to test the hypothesis that A/V cues of bladder volume can alter patient-perceived bladder sensation during hydration studies. Healthy volunteers without urinary symptoms based on ICIq-OAB survey scores were recruited for an oral hydration study where they completed two fill/void cycles.
View Article and Find Full Text PDFPurpose: Despite the importance of alterations in bladder sensation, objective metrics to characterize sensation outside of urodynamics remain limited. A real-time sensation meter enables recording of sensation event descriptors throughout filling. The purpose of this study was to evaluate the differences in sensation event descriptor patterns between normal participants and those with OAB.
View Article and Find Full Text PDFBackground: Chronic ischemia is a known risk factor for the development of lower urinary tract symptoms (LUTS) and bladder hypocontractility. Less is known, however, about the impact of acute ischemia. Classic teaching suggests that collateral circulation is robust in the bladder and, therefore, loss of a single source of blood flow should have no deleterious effect.
View Article and Find Full Text PDFPurpose: Dynamic elasticity is a biomechanical property of the bladder in which muscle compliance can be acutely adjusted through passive stretches and reversed with active contractions. The aim of this study was to determine if manipulating dynamic elasticity using external compression could be used as a novel method to acutely increase bladder capacity and reduce bladder pressure in a porcine model.
Methods: Ex vivo experiment: bladders underwent continuous or pulsatile compression after establishing a reference pressure at bladder capacity.
Objective: Rhythmic contractions of the bladder wall during filling result from the synchronization of bladder wall micromotion and are often observed in the urodynamic tracings of individuals with urinary overactive bladder (OAB). This study's objective was to develop a novel, non-invasive method to measure bladder wall micromotion and to conduct an initial study to test the hypothesis that elevated micromotion is associated with OAB.
Methods: This prospective study enrolled women with OAB and asymptomatic volunteers as measured by the ICIQ-OAB survey.
Background: The aim of this project was to develop an ex-vivo porcine bladder model to test the effects of increasing durations of acute ischemia on detrusor function.
Methods: Porcine bladders were perfused through bilateral vesical arteries at physiologic flow (4 mL/min) and filled through a urethral catheter. Intravesical pressures were continuously recorded using standard urodynamics equipment.
Aims: Dynamic elasticity was previously identified in individuals with overactive bladder (OAB) using comparative-fill urodynamics (UD) and is a biomechanical mechanism for acutely regulating detrusor wall tension. On the basis of this data, a conceptual model of dynamic elasticity regulation mediated through a balance of passive mechanisms and active contractions was constructed. The present study tested this model by determining whether individuals with detrusor overactivity (DO) exhibit less dynamic elasticity than individuals without DO.
View Article and Find Full Text PDFObjectives: A non-invasive protocol was previously developed using three-dimensional ultrasound and a sensation meter to characterize real-time bladder sensation. This study the protocol by measuring the effects of fill rateand ultrasound probe pressure during oral hydration.
Methods: Healthy volunteers with no urinary symptoms (based on International Consultation on Incontinence Questionnaire on Overactive Bladder surveys) were recruited into an oral hydration study.
Introduction: Dynamic elasticity is an acutely regulated bladder material property through which filling and passive emptying produce strain softening, and active voiding restores baseline pressure. The aim of this study was to test the hypothesis that strain softening produced by filling-passive emptying is equivalent to that produced by compression-release in a porcine bladder model.
Methods/materials: Latex balloons and ex vivo perfused pig bladders were used for a series of alternating fill-passive emptying ("Fill") and external compress-release ("Press") protocols.
Objectives: Detrusor overactivity (DO) is characterized by non-voiding detrusor smooth muscle contractions during the bladder filling phase and often contributes to overactive bladder. In some patients DO is observed as isolated or sporadic contractions, while in others DO is manifested as low amplitude rhythmic contractions (LARC). The aim of this study was to develop an objective method to quantify LARC frequencies and amplitudes in urodynamic studies (UDS) and identify a subgroup DO of patients with LARC.
View Article and Find Full Text PDF