Publications by authors named "Zachary Crook"

Article Synopsis
  • - TPD can effectively eliminate disease-causing proteins by engaging a cell’s protein degradation system, overcoming limitations of traditional inhibitors that typically target only one mechanism.
  • - The CYpHER technology utilizes a pH-dependent release system and a rapidly cycling transferrin receptor to enhance the delivery of therapeutic agents to surface and extracellular targets, increasing treatment potency while potentially reducing side effects.
  • - Successful application of CYpHER was demonstrated both in laboratory settings (in vitro) with specific cancer markers (EGFR and PD-L1) and in animal studies (in vivo) using a model of lung cancer driven by EGFR.
View Article and Find Full Text PDF

Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used advanced modeling software to predict the structure of 4,298 CDP scaffolds and identified potential CDP binders for a therapeutic target called PD-L1.
  • * A particularly effective CDP was developed that binds to PD-L1 and, when combined with another targeting agent, demonstrated superior ability to kill cancer cells and improve survival rates in mouse models compared to traditional antibody therapies.
View Article and Find Full Text PDF

The impenetrability of the blood-brain barrier (BBB) to most conventional drugs impedes the treatment of central nervous system (CNS) disorders. Interventions for diseases like brain cancer, neurodegeneration, or age-associated inflammatory processes require varied approaches to CNS drug delivery. Cystine-dense peptides (CDPs) have drawn recent interest as drugs or drug-delivery vehicles.

View Article and Find Full Text PDF

Miniproteins are a diverse group of protein scaffolds characterized by small (1-10 kDa) size, stability, and versatility in drug-like roles. Coming largely from native sources, they have been widely adopted into drug development pipelines. While their structures and capabilities are diverse, the approaches to their utilization share more similarities with each other than with more widely used modalities (e.

View Article and Find Full Text PDF

Many diseases are mediated by targets that are not amenable to conventional small-molecule drug approaches. While antibody-based drugs have undeniable utility, peptides of the 1-9 kDa size range (10-80 amino acids) have drawn interest as alternate drug scaffolds This is born of a desire to identify compounds with the advantages of antibody-based therapeutics (affinity, potency, specificity, and ability to disrupt protein:protein interactions) without all of their liabilities (large size, expensive manufacturing, and necessity of humanization). Of these alternate scaffolds, cystine-dense peptides (CDPs) have several specific benefits.

View Article and Find Full Text PDF

In the original version of this Article the colour key for the amino acid enrichment score was inadvertently omitted from the lower panel of Figure 5b during the production process. This has now been corrected in the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Protein:protein interactions are among the most difficult to treat molecular mechanisms of disease pathology. Cystine-dense peptides have the potential to disrupt such interactions, and are used in drug-like roles by every clade of life, but their study has been hampered by a reputation for being difficult to produce, owing to their complex disulfide connectivity. Here we describe a platform for identifying target-binding cystine-dense peptides using mammalian surface display, capable of interrogating high quality and diverse scaffold libraries with verifiable folding and stability.

View Article and Find Full Text PDF

Rapidly identifying targets for Huntington's Disease (HD) therapeutics in relevant mouse models could hasten the development of patient interventions. We have recently described a method for rapidly and quantitatively measuring the progression of HD-like symptoms in mouse models. Because this method uses flow cytometry to measure GFP levels in affected neurons, it is amenable to pooled approaches.

View Article and Find Full Text PDF

Though 20 years have now passed since the cloning of the huntingtin gene (HTT), there remains no treatment for Huntington's Disease (HD) that alters the course of disease or lifespan of patients. The reasons for this are manifold, and likely have to do with the diverse cellular pathways disrupted by mutant HTT (mHTT) protein expression. Furthermore, the evaluation of efficacy using a putative intervention is complex, largely due to the slow course of disease and variability in the classic techniques for evaluating patient symptoms and quality of life, which make the patient populations and duration of trials particularly imposing.

View Article and Find Full Text PDF

The ability to quantitatively evaluate the impact of a potential therapeutic intervention for Huntington disease (HD) in animal models for the disease is a critical step in the pathway to development of an effective therapy for this devastating neurodegenerative disorder. We report here an approach that combines a cell-based assay's quantitative accuracy and direct relationship to molecular processes with the ability to directly monitor effects in HD model mouse neurons. To accomplish this goal, we have developed an accurate quantitative reporter assay for a transcript known to be down-regulated as an early consequence of mutant huntingtin expression.

View Article and Find Full Text PDF

Mouse models for Huntington's Disease (HD) and HD patients demonstrate motor and behavioral dysfunctions, such as progressive loss of coordination and memory, and share similar transcriptional profiles and striatal neuron atrophy. Clear differences between the mouse and human diseases include almost complete striatal degeneration and rarity of intranuclear inclusions in HD, and the fact that mice expressing full-length mutant huntingtin do not demonstrate a shortened life span characteristic of HD. While no clinical interventions tested in mouse models to date have delayed disease progression, the mouse models provide an invaluable tool for both investigating the underlying pathogenic processes and developing new effective therapies.

View Article and Find Full Text PDF

Eukaryotic cells respond to low-oxygen concentrations by upregulating hypoxic nuclear genes (hypoxic signaling). Although it has been shown previously that the mitochondrial respiratory chain is required for hypoxic signaling, its underlying role in this process has been unclear. Here, we find that yeast and rat liver mitochondria produce nitric oxide (NO) at dissolved oxygen concentrations below 20 microM.

View Article and Find Full Text PDF