Publications by authors named "Zachary Carico"

Autophagy, a highly conserved intracellular process, has been identified as a novel mechanism regulating T lymphocyte homeostasis. Herein, we demonstrate that both starvation- and T cell receptor-mediated autophagy induction requires class I phosphatidylinositol-3 kinases to produce PI(3)P. In contrast, common gamma chain cytokines are suppressors of autophagy despite their ability to activate the PI3K pathway.

View Article and Find Full Text PDF

The cohesin complex spatially organizes interphase chromatin by bringing distal genomic loci into close physical proximity, looping out the intervening DNA. Mutation of cohesin complex subunits is observed in cancer and developmental disorders, but the mechanisms through which these mutations may contribute to disease remain poorly understood. Here, we investigate a recurrent missense mutation to the hinge domain of the cohesin subunit SMC1A, observed in acute myeloid leukemia.

View Article and Find Full Text PDF

Cohesin is a ring-shaped protein complex that controls dynamic chromosome structure. Cohesin activity is important for a variety of biological processes, including formation of DNA loops that regulate gene expression. The precise mechanisms by which cohesin shapes local chromosome structure and gene expression are not fully understood.

View Article and Find Full Text PDF

Background: The three-dimensional organization of the genome in the nucleus plays an integral role in many biological processes, including gene expression. The genome is folded into DNA loops that bring together distal regulatory elements and genes. Cohesin, a ring-shaped protein complex, is a major player in the formation of DNA loops.

View Article and Find Full Text PDF

Chromosome structure is a key regulator of gene expression. CTCF and cohesin play critical roles in structuring chromosomes by mediating physical interactions between distant genomic sites. The resulting DNA loops often contain genes and their cis-regulatory elements.

View Article and Find Full Text PDF

Adaptive immunity depends on diverse T cell receptor repertoires generated by variable, diversity, and joining (V[D]J) recombination. Here, we define the principles by which combinatorial diversity is generated in the murine Tcra repertoire. Tcra and Tcrd gene segments share the Tcra-Tcrd locus, with interspersed V and V segments undergoing V-D-J rearrangement in CD4CD8 thymocytes and then multiple rounds of V-J rearrangement in CD4CD8 thymocytes.

View Article and Find Full Text PDF

The adaptive immune system allows vertebrates to orchestrate highly specific responses to a virtually unlimited milieu of antigens. Effective adaptive immune responses depend on the capacity of T and B lymphocytes to generate diverse repertoires of antigen receptors through the recombination of variable (V), diversity (D), and joining (J) gene segments at antigen receptor loci. V(D)J recombination must be carefully regulated during the early stages of T and B lymphocyte development to ensure the proper development of lymphocyte subsets and to maximize antigen receptor combinatorial diversity.

View Article and Find Full Text PDF

The locus encoding the T cell antigen receptor (TCR) α-chain and δ-chain (Tcra-Tcrd) undergoes recombination of its variable-diversity-joining (V(D)J) segments in CD4(-)CD8(-) double-negative thymocytes and CD4(+)CD8(+) double-positive thymocytes to generate diverse TCRδ repertoires and TCRα repertoires, respectively. Here we identified a chromatin-interaction network in the Tcra-Tcrd locus in double-negative thymocytes that was formed by interactions between binding elements for the transcription factor CTCF. Disruption of a discrete chromatin loop encompassing the D, J and constant (C) segments of Tcrd allowed a single V segment to frequently contact and rearrange to D and J segments and dominate the adult TCRδ repertoire.

View Article and Find Full Text PDF

Accumulating evidence indicates that the tuberous sclerosis complex 1 (TSC1), a tumor suppressor that acts by inhibiting mTOR signaling, plays an important role in the immune system. We report here that TSC1 differentially regulates mTOR complex 1 (mTORC1) and mTORC2/Akt signaling in B cells. TSC1 deficiency results in the accumulation of transitional-1 (T1) B cells and progressive losses of B cells as they mature beyond the T1 stage.

View Article and Find Full Text PDF