Publications by authors named "Zachary Call"

Unlabelled: Small, single-layer microfluidic paper-based analytical devices (µPADs) offer potential for a range of point-of-care applications; however, they have been limited to low flow rates. Here, we investigate the role of laser cutting paper channels in maximizing flow rate in small profile devices with limited fluid volumes. We demonstrate that branching, laser-cut grooves can provide a 59.

View Article and Find Full Text PDF

Over the last few years, the SARS-CoV-2 pandemic has made the need for rapid, affordable diagnostics more compelling than ever. While traditional laboratory diagnostics like PCR and well-plate ELISA are sensitive and specific, they can be costly and take hours to complete. Diagnostic tests that can be used at the point-of-care or at home, like lateral flow assays (LFAs) are a simple, rapid alternative, but many commercially available LFAs have been criticized for their lack of sensitivity compared to laboratory methods like well-plate ELISAs.

View Article and Find Full Text PDF

A capillary-driven microfluidic sequential flow device, designed for eventual at-home or doctor's office use, was developed to perform an enzyme-linked immunosorbent assay (ELISA) for serology assays. Serology assays that detect SARS-CoV-2 antibodies can be used to determine prior infection, immunity status, and/or individual vaccination status and are typically run using well-plate ELISAs in centralized laboratories, but in this format SARs-CoV-2 serology tests are too expensive and/or slow for most situations. Instead, a point-of-need device that can be used at home or in doctor's offices for COVID-19 serology testing would provide critical information for managing infections and determining immune status.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) are one of the most common infections across the world and can lead to serious complications such as sepsis if not treated in a timely manner. Uropathogenic account for 75% of all UTIs. Early diagnosis is crucial to help control UTIs, but current culturing methods are expensive and time-consuming and lack sensitivity.

View Article and Find Full Text PDF

Microfluidic magnetophoresis is a powerful technique that is used to separate and/or isolate cells of interest from complex matrices for analysis. However, mechanical pumps are required to drive flow, limiting portability and making translation to point-of-care (POC) settings difficult. Microfluidic paper-based analytical devices (μPADs) offer an alternative to traditional microfluidic devices that do not require external pumps to generate flow.

View Article and Find Full Text PDF

A reliable, intermediate scale preparation of 1,2,3,4,5-pentamethylcyclopentadiene (Cp*H) is presented, based on modifications of existing protocols that derive from initial 2-bromo-2-butene lithiation followed by acid mediated dienol cyclization. The revised synthesis and purification of the ligand avoids the use of mechanical stirring while still permitting access to significant quantities (39 g) of Cp*H in good yield (58%). The procedure offers other additional benefits, including a more controlled quench of excess lithium during the production of the intermediate heptadienols and a simplified isolation of Cp*H of sufficient purity for metallation with transition metals.

View Article and Find Full Text PDF