Near-future climate change projections predict an increase in sea surface temperature that is expected to have significant and rapid effects on marine ectotherms, potentially affecting a number of critical life processes. Some habitats also undergo more thermal variability than others, and the inhabitants therefore must be more tolerant to acute periods of extreme temperatures. Mitigation of these outcomes may occur through acclimation, plasticity or adaptation, although the rate and extent of a species' ability to adjust to warmer temperatures is largely unknown, specifically as it pertains to effects on various performance metrics in fishes that inhabit multiple habitats throughout ontogenetic stages.
View Article and Find Full Text PDFIdentifying prey resource pools supporting fish biomass can elucidate trophic pathways of pollutant bioaccumulation. We used multiple chemical tracers (carbon [δC] and nitrogen [δN] stable isotopes and total mercury [THg]) to identify trophic pathways and measure contaminant loading in upper trophic level fishes residing at a reef and open-ocean interface near Eleuthera in the Exuma Sound, The Bahamas. We focused predominantly on the trophic pathways of mercury bioaccumulation in dolphinfish and wahoo , 2 commonly consumed pelagic sportfish in the region.
View Article and Find Full Text PDFClimate change due to anthropogenic activity will continue to alter the chemistry of the oceans. Future climate scenarios indicate that sub-tropical oceans will become more acidic, and the temperature and salinity will increase relative to current conditions. A large portion of previous work has focused on how future climate scenarios may impact shell-forming organisms and coral reef fish, with little attention given to fish that inhabit nearshore habitats; few studies have examined multiple challenges concurrently.
View Article and Find Full Text PDF