Mild hypothermia (MH) and retroperfusion are 2 techniques proposed to reduce infarct size due to myocardial infarction. The authors evaluated the effects of focal MH combined with selective coronary venous autoretroperfusion (SARP) as an acute cardioprotective modality before percutaneous coronary intervention (PCI) in a swine model of left ventricular myocardial infarction. Significant reduction in infarct size with preservation of cardiac function and cardiomyocyte viability were achieved.
View Article and Find Full Text PDFBackground: Proper vessel sizing during endovascular interventions is crucial to avoid adverse procedural and clinical outcomes. LumenRECON (LR) is a novel, nonimaging, 0.035-inch wire-based technology that uses the physics-based principle of Ohm's law to provide a simple, real-time luminal size while also providing a platform for therapy delivery.
View Article and Find Full Text PDFAlthough the clinical range of interventions for coronary arteries is about 2 to 5 mm, the range of diameters of peripheral vasculature is significantly larger (about 10 mm for human iliac artery). When the vessel diameter is increased, the spacing between excitation electrodes on a conductance sizing device must also increase to accommodate the greater range of vessel diameters. The increase in the excitation electrodes distance, however, causes higher parallel conductance or current losses outside of artery lumen.
View Article and Find Full Text PDFAims: Percutaneous structural heart therapies, such as mitral value repair, require site-specific transseptal access (TSA). This can be challenging for interventional cardiologists. We describe a TSA catheter (TSAC) that utilises suction for enhanced control and puncture accuracy.
View Article and Find Full Text PDFJ Vasc Surg Venous Lymphat Disord
January 2017
Background: Efforts to treat chronic venous insufficiency have focused on the development of prosthetic venous valves. The role of prosthetic valve-to-vessel size matching has not been determined. The purpose of this investigation was to assess the effect of size mismatching on venous valve function and to establish a mismatch limit that affects valve hemodynamic performance and venous wall stress to improve future valve designs and implants.
View Article and Find Full Text PDFThere is a significant need for fixed biological tissues with desired structural and material constituents for tissue engineering applications. Here, we introduce the lung ligament as a fixed biological material that may have clinical utility for tissue engineering. To characterize the lung tissue for potential clinical applications, we studied glutaraldehyde-treated porcine pulmonary ligament (n = 11) with multiphoton microscopy (MPM) and conducted biaxial planar experiments to characterize the mechanical property of the tissue.
View Article and Find Full Text PDFJ Vasc Surg Venous Lymphat Disord
July 2015
Objective: The passive properties of the venous wall are important for the compliance function of the venous system. The objective of this study was to quantify the passive biomechanical response and structural growth and remodeling of veins subjected to chronic venous reflux and hypertension.
Methods: To investigate the effects of venous reflux on venous mechanics, the tricuspid valve was injured in a canine model by disrupting the chordae tendineae.
Hydrogen peroxide (H2O2) and voltage-dependent K(+) (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed.
View Article and Find Full Text PDFJ Vasc Surg Venous Lymphat Disord
January 2015
Background: There is significant interest in a venous prosthesis to replace insufficient valves. The aim of the current study was to select the patients with hemodynamic conditions most likely to benefit from a valve implant. The hypothesis is that the venous valve prosthesis is most suitable for patients with significant reflux, such as in chronic venous insufficiency (CVI), right heart hypertrophy (RHH), and right heart failure (RHF).
View Article and Find Full Text PDFCatheter Cardiovasc Interv
July 2015
Background: Inaccurate aortic valve sizing and selection is linked to paravalvular leakage in transcatheter aortic valve replacement (TAVR). Here, a novel sizing valvuloplasty conductance balloon (SVCB) catheter is shown to be accurate, reproducible, unbiased, and provides real-time tool for aortic valve sizing that fits within the standard valvuloplasty procedure.
Methods And Results: The SVCB catheter is a valvuloplasty device that uses real-time electrical conductance measurements based on Ohm's Law to size the balloon opposed against the aortic valve at any given inflation pressure.
Background: In vivo studies have shown that valves in veins are paired in an orthogonal configuration. The aim of this study is to characterize the flow interaction of paired valves under controlled in vitro bench conditions.
Methods: A bench top in vitro experiment was set up at physiological flow conditions to simulate the flow inside a venous valve.
Purpose: Determine the influence of passage through the body wall on the properties of lithotripter shock waves (SWs) and the characteristics of the acoustic field of an electromagnetic lithotripter.
Methods: Full-thickness ex vivo segments of pig abdominal wall were secured against the acoustic window of a test tank coupled to the lithotripter. A fiber-optic probe hydrophone was used to measure SW pressures, determine shock rise time, and map the acoustic field in the focal plane.
Objective: This study examined the mechanisms by which H2 S modulates coronary microvascular resistance and myocardial perfusion at rest and in response to cardiac ischemia.
Methods: Experiments were conducted in isolated coronary arteries and in open-chest anesthetized dogs.
Results: We found that the H2 S substrate l-cysteine (1-10 mM) did not alter coronary tone of isolated arteries in vitro or coronary blood flow in vivo.
Previous investigations indicate that diminished functional expression of voltage-dependent K(+) (KV) channels impairs control of coronary blood flow in obesity/metabolic syndrome. The goal of this investigation was to test the hypothesis that KV channels are electromechanically coupled to CaV1.2 channels and that coronary microvascular dysfunction in obesity is related to subsequent increases in CaV1.
View Article and Find Full Text PDFGlucagon-like peptide 1 (GLP-1) has insulin-like effects on myocardial glucose uptake which may contribute to its beneficial effects in the setting of myocardial ischemia. Whether these effects are different in the setting of obesity or type 2 diabetes (T2DM) requires investigation. We examined the cardiometabolic actions of GLP-1 (7-36) in lean and obese/T2DM humans, and in lean and obese Ossabaw swine.
View Article and Find Full Text PDFBackground: This investigation examined the mechanisms by which coronary perivascular adipose tissue (PVAT)-derived factors influence vasomotor tone and the PVAT proteome in lean versus obese swine.
Methods And Results: Coronary arteries from Ossabaw swine were isolated for isometric tension studies. We found that coronary (P=0.
Previous studies from our laboratory showed that coronary arterioles from type 2 diabetic mice undergo inward hypertrophic remodeling and reduced stiffness. The aim of the current study was to determine if coronary resistance microvessels (CRMs) in Ossabaw swine with metabolic syndrome (MetS) undergo remodeling distinct from coronary conduit arteries. Male Ossabaw swine were fed normal (n = 7, Lean) or hypercaloric high-fat (n = 7, MetS) diets for 6 mo, and then CRMs were isolated and mounted on a pressure myograph.
View Article and Find Full Text PDFLarge conductance, Ca(2+)/voltage-sensitive K(+) channels (BK channels) are well characterized, but their physiological roles, often determined through pharmacological manipulation, are less clear. Iberiotoxin is considered the "gold standard" antagonist, but cost and membrane-impermeability limit its usefulness. Economical and membrane-permeable alternatives could facilitate the study of BK channels.
View Article and Find Full Text PDFThe mechanisms responsible for coronary pressure-flow autoregulation, a critical physiologic phenomenon that maintains coronary blood flow relatively constant in the presence of changes in perfusion pressure, remain poorly understood. This investigation tested the hypothesis that voltage-sensitive K(+) (K(V)) and Ca(2+) (Ca(V)1.2) channels play a critical role in coronary pressure-flow autoregulation in vivo.
View Article and Find Full Text PDFWe examined the acute dose-dependent effects of intracoronary glucagon-like peptide (GLP)-1 (7-36) on coronary vascular tone, cardiac contractile function and metabolism in normal and ischemic myocardium. Experiments were conducted in open chest, anesthetized dogs at coronary perfusion pressures (CPP) of 100 and 40 mmHg before and during intracoronary GLP-1 (7-36) infusion (10 pmol/L to 1 nmol/L). Isometric tension studies were also conducted in isolated coronary arteries.
View Article and Find Full Text PDFJ Appl Physiol (1985)
December 2011
Activation of ADP-sensitive P2Y(1) receptors has been proposed as an integral step in the putative "nucleotide axis" regulating coronary blood flow. However, the specific mechanism(s) and overall contribution of P2Y(1) receptors to the control of coronary blood flow have not been clearly defined. Using vertically integrative studies in isolated coronary arterioles and open-chest anesthetized dogs, we examined the hypothesis that P2Y(1) receptors induce coronary vasodilation via an endothelium-dependent mechanism and contribute to coronary pressure-flow autoregulation and/or ischemic coronary vasodilation.
View Article and Find Full Text PDFCirculating hormones stimulate the phospholipase Cβ (PLC)/Ca(2+) influx pathway to regulate numerous cell functions, including vascular tone. It was proposed previously that Ca(2+)-independent phospholipase A(2) (iPLA(2))-dependent store-operated Ca(2+) influx channels mediate hormone-induced contractions in isolated arteries, because bromoenol lactone (BEL), a potent irreversible inhibitor of iPLA(2), inhibited such contractions. However, the effects of BEL on other channels implicated in mediating hormone-induced vessel contractions, specifically voltage-gated Ca(2+) (Ca(V)1.
View Article and Find Full Text PDFThe purpose of this investigation was to test the hypothesis that K(V) channels contribute to metabolic control of coronary blood flow and that decreases in K(V) channel function and/or expression significantly attenuate myocardial oxygen supply-demand balance in the metabolic syndrome (MetS). Experiments were conducted in conscious, chronically instrumented Ossabaw swine fed either a normal maintenance diet or an excess calorie atherogenic diet that produces the clinical phenotype of early MetS. Data were obtained under resting conditions and during graded treadmill exercise before and after inhibition of K(V) channels with 4-aminopyridine (4-AP, 0.
View Article and Find Full Text PDFMetabolic syndrome (MetS) is a collection of risk factors including obesity, dyslipidemia, insulin resistance/impaired glucose tolerance, and/or hypertension. The incidence of obesity has reached pandemic levels, as ~20-30% of adults in most developed countries can be classified as having MetS. This increased prevalence of MetS is critical as it is associated with a two-fold elevated risk for cardiovascular disease.
View Article and Find Full Text PDF