Publications by authors named "Zachary B Davis"

Introduction: NK cells can mediate tumor cell killing by natural cytotoxicity and by antibody-dependent cell-mediated cytotoxicity (ADCC), an anti-tumor mechanism mediated through the IgG Fc receptor CD16A (FcγRIIIA). CD16A polymorphisms conferring increased affinity for IgG positively correlate with clinical outcomes during monoclonal antibody therapy for lymphoma, linking increased binding affinity with increased therapeutic potential via ADCC. We have previously reported on the FcγR fusion CD64/16A consisting of the extracellular region of CD64 (FcγRI), a high-affinity Fc receptor normally expressed by myeloid cells, and the transmembrane/cytoplasmic regions of CD16A, to create a highly potent and novel activating fusion receptor.

View Article and Find Full Text PDF

Background: Natural killer (NK) cells are dysfunctional in chronic human immunodeficiency virus (HIV) infection as they are not able to clear virus. We hypothesized that an infusion of NK cells, supported by interleukin 2 (IL-2) or IL-15, could decrease virus-producing cells in the lymphatic tissues.

Methods: We conducted a phase 1 pilot study in 6 persons with HIV (PWH), where a single infusion of haploidentical related donor NK cells was given plus either IL-2 or N-803 (an IL-15 superagonist).

View Article and Find Full Text PDF

Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern.

View Article and Find Full Text PDF

Allogeneic natural killer (NK) cell adoptive transfer is a promising treatment for several cancers but is less effective for the treatment of multiple myeloma. In this study, we report on quadruple gene-engineered induced pluripotent stem cell (iPSC)-derived NK cells designed for mass production from a renewable source and for dual targeting against multiple myeloma through the introduction of an NK cell-optimized chimeric antigen receptor (CAR) specific for B cell maturation antigen (BCMA) and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity when combined with therapeutic anti-CD38 antibodies. Additionally, these cells express a membrane-bound interleukin-15 fusion molecule to enhance function and persistence along with knock out of CD38 to prevent antibody-mediated fratricide and enhance NK cell metabolic fitness.

View Article and Find Full Text PDF

Substantial numbers of B cell leukemia and lymphoma patients relapse due to antigen loss or heterogeneity after anti-CD19 chimeric antigen receptor (CAR) T cell therapy. To overcome antigen escape and address antigen heterogeneity, we engineered induced pluripotent stem cell-derived NK cells to express both an NK cell-optimized anti-CD19 CAR for direct targeting and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity. In addition, we introduced a membrane-bound IL-15/IL-15R fusion protein to promote in vivo persistence.

View Article and Find Full Text PDF

There is no cure for HIV infection, and lifelong antiretroviral therapy (ART) is required. N-803 is an IL-15 superagonist comprised of an N72D mutant IL-15 molecule attached to its alpha receptor and a human IgG1 fragment designed to increase IL-15 activity. Preclinical studies with both HIV and SIV suggest that the drug has potential to reduce virus reservoirs by activating virus from latency and enhancing effector function.

View Article and Find Full Text PDF

Select subsets of immune effector cells have the greatest propensity to mediate antitumor responses. However, procuring these subsets is challenging, and cell-based immunotherapy is hampered by limited effector-cell persistence and lack of on-demand availability. To address these limitations, we generated a triple-gene-edited induced pluripotent stem cell (iPSC).

View Article and Find Full Text PDF

The development of immunotherapeutic monoclonal antibodies targeting checkpoint inhibitory receptors, such as programmed cell death 1 (PD-1), or their ligands, such as PD-L1, has transformed the oncology landscape. However, durable tumor regression is limited to a minority of patients. Therefore, combining immunotherapies with those targeting checkpoint inhibitory receptors is a promising strategy to bolster antitumor responses and improve response rates.

View Article and Find Full Text PDF

Natural killer (NK) cells have long been known to mediate anti-tumor responses without prior sensitization or recognition of specific tumor antigens. However, the tumor microenvironment can suppress NK cell function resulting in tumor escape and disease progression. Despite recent advances in cytokine therapy and NK cell adoptive transfer, tumor expression of ligands to NK - expressed checkpoint receptors can still suppress NK mediated tumor lysis.

View Article and Find Full Text PDF

Activation of primary CD4 T cells induces the CD155, but not the CD112 ligands for the natural killer (NK) cell activation receptor (aNKR) CD226 [DNAX accessory molecule-1 (DNAM-1)]. We hypothesize that HIV productively infects activated CD4 T cells and makes itself vulnerable to NK cell-mediated lysis when CD155 on infected T cells engages DNAM-1. The primary objective of this study is to determine whether CD155 alone or together with NKG2D ligands triggers autologous NK cell lysis of HIV-infected T cells and whether HIV modulates CD155.

View Article and Find Full Text PDF

Cancer immunotherapies have gained significant momentum over the past decade, particularly with the advent of checkpoint inhibitors and CAR T-cells. While the latter personalized targeted immunotherapy has revolutionized the field, a need for off-the-shelf therapies remains. The ability of NK cells to quickly lyse antibody-coated tumors and potently secrete cytokines without prior priming has made NK cells ideal candidates for antigen-specific immunotherapy.

View Article and Find Full Text PDF

Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E.

View Article and Find Full Text PDF

Natural killer (NK) cells constitute an important component of the initial immunological response against transformed cells. However, chronic exposure to the tumor microenvironment can fundamentally alter the ability of NK cells to sufficiently control tumor progression. Thus, the adoptive transfer of healthy, functional NK cells as an interventional therapy has been an area of great interest for improving patient outcomes.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) reactivates in >30% of CMV-seropositive patients after allogeneic hematopoietic cell transplantation (HCT). Previously, we reported an increase of natural killer (NK) cells expressing NKG2C, CD57, and inhibitory killer cell immunoglobulin-like receptors (KIRs) in response to CMV reactivation after HCT. These NK cells persist after the resolution of infection and display "adaptive" or memory properties.

View Article and Find Full Text PDF

Natural killer (NK) cells are a vital component of the innate immune response to virus-infected cells. It is important to understand the ability of NK cells to recognize and lyse HIV-1 infected cells because identifying any aberrancy in NK cell function against HIV-infected cells could potentially lead to therapies that would enhance their cytolytic activity. There is a need to use HIV-infected primary T-cell blasts as target cells rather then infected-T-cell lines in the cytotoxicity assays.

View Article and Find Full Text PDF

Natural killer (NK) cell degranulation in response to virus-infected cells is triggered by interactions between invariant NK cell surface receptors and their ligands on target cells. Although HIV-1 Vpr induces expression of ligands for NK cell activation receptor, NKG2D, on infected cells, this is not sufficient to promote lytic granule release. We show that triggering the NK cell coactivation receptor NK-T- and -B cell antigen (NTB-A) alongside NKG2D promotes NK cell degranulation.

View Article and Find Full Text PDF