Publications by authors named "Zacharioudakis E"

Article Synopsis
  • The study investigates the combined effects of the APOE4 allele and TREM2 R47H variant on Alzheimer's disease in female mice with tauopathy, revealing how these factors exacerbate neurodegeneration.
  • Researchers found that the presence of both genetic risk factors worsens tau pathology and enhances inflammatory signaling in the brain, specifically through the cGAS-STING pathway.
  • The findings suggest that microglial senescence and mitochondrial changes may play a critical role in the progression of Alzheimer's disease, highlighting potential targets for future research and treatment.
View Article and Find Full Text PDF

The escape of mitochondrial double-stranded dsRNA (mt-dsRNA) into the cytosol has been recently linked to a number of inflammatory diseases. Here, we report that the release of mt-dsRNA into the cytosol is a general feature of senescent cells and a critical driver of their inflammatory secretome, known as senescence-associated secretory phenotype (SASP). Inhibition of the mitochondrial RNA polymerase, the dsRNA sensors RIGI and MDA5, or the master inflammatory signaling protein MAVS, all result in reduced expression of the SASP, while broadly preserving other hallmarks of senescence.

View Article and Find Full Text PDF

The strongest risk factors for Alzheimer's disease (AD) include the χ4 allele of apolipoprotein E (APOE), the variant of triggering receptor expressed on myeloid cells 2 (TREM2), and female sex. Here, we combine and ( ) in female tauopathy mice to identify the pathways activated when AD risk is the strongest, thereby highlighting disease-causing mechanisms. We find that the variant induces neurodegeneration in female mice without impacting hippocampal tau load.

View Article and Find Full Text PDF

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP). Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence.

View Article and Find Full Text PDF

The crosstalk between mitochondria and the nucleus regulates cell plasticity and innate immune response. A new study shows that copper(II) accumulates in mitochondria of activated macrophages in response to pathogen infection and induces metabolic and epigenetic reprogramming that promotes inflammation. Pharmacologic targeting of mitochondrial copper(II) uncovers a new therapeutic strategy to combat aberrant inflammation and regulate cell plasticity.

View Article and Find Full Text PDF

Unlabelled: BH3 mimetics are used as an efficient strategy to induce cell death in several blood malignancies, including acute myeloid leukemia (AML). Venetoclax, a potent BCL-2 antagonist, is used clinically in combination with hypomethylating agents for the treatment of AML. Moreover, MCL1 or dual BCL-2/BCL-xL antagonists are under investigation.

View Article and Find Full Text PDF

The importance of mitochondrial dynamics, the physiological process of mitochondrial fusion and fission, in regulating diverse cellular functions and cellular fitness has been well established. Several pathologies are associated with aberrant mitochondrial fusion or fission that is often a consequence of deregulated mitochondrial dynamics proteins; however, pharmacological targeting of these proteins has been lacking and is challenged by complex molecular mechanisms. Recent studies have advanced our understanding in this area and have enabled rational drug design and chemical screening strategies.

View Article and Find Full Text PDF

Dynamic protein complexes function in all cellular processes, from signaling to transcription, using distinct conformations that regulate their activity. Conformational switching of proteins can turn on or off their activity through protein-protein interactions, catalytic function, cellular localization, or membrane interaction. Recent advances in structural, computational, and chemical methodologies have enabled the discovery of small-molecule activators and inhibitors of conformationally dynamic proteins by using a more rational design than a serendipitous screening approach.

View Article and Find Full Text PDF
Article Synopsis
  • Mitofusins are proteins on the outer mitochondrial membrane that help regulate the process of mitochondrial fusion, which is crucial for various cellular functions.
  • Researchers have discovered small molecules that can either enhance or inhibit the activity of mitofusins by altering their shape and ability to form complexes (oligomerization).
  • Inhibiting mitofusins not only reduces mitochondrial fusion and functionality but also leads to issues like mitochondrial membrane damage, activation of specific caspases, DNA damage, and an increase in genes related to the DNA damage response, highlighting their potential as drug targets for further studies.
View Article and Find Full Text PDF

Replication stress (RS) has a pivotal role in tumor initiation, progression, or therapeutic resistance. In this study, we depicted the mechanism of breast cancer stem cells' (bCSCs) response to RS and its clinical implication. We demonstrated that bCSCs present a limited level of RS compared with non-bCSCs in patient samples.

View Article and Find Full Text PDF

The BCL-2 family protein BAX has essential activity in mitochondrial regulation of cell death. While BAX activity ensures tissue homeostasis, when dysregulated it contributes to aberrant cell death in several diseases. During cellular stress BAX is transformed from an inactive cytosolic conformation to a toxic mitochondrial oligomer.

View Article and Find Full Text PDF

BRAF kinase, a critical effector of the ERK signaling pathway, is hyperactivated in many cancers. Oncogenic BRAF signals as an active monomer in the absence of active RAS, however, in many tumors BRAF dimers mediate ERK signaling. FDA-approved RAF inhibitors poorly inhibit BRAF dimers, which leads to tumor resistance.

View Article and Find Full Text PDF

Mitofusins (MFNs) promote fusion-mediated mitochondrial content exchange and subcellular trafficking. Mutations in cause neurodegenerative Charcot-Marie-Tooth disease type 2A (CMT2A). We showed that MFN2 activity can be determined by Met and His interactions with Asp and Leu and controlled by PINK1 kinase-mediated phosphorylation of adjacent MFN2 Ser Small-molecule mimics of the peptide-peptide interface of MFN2 disrupted this interaction, allosterically activating MFN2 and promoting mitochondrial fusion.

View Article and Find Full Text PDF

Cisplatin derivatives can form various types of DNA lesions (DNA-Pt) and trigger pleiotropic DNA damage responses. Here, we report a strategy to visualize DNA-Pt with high resolution, taking advantage of a novel azide-containing derivative of cisplatin we named APPA, a cellular pre-extraction protocol and the labeling of DNA-Pt by means of click chemistry in cells. Our investigation revealed that pretreating cells with the histone deacetylase (HDAC) inhibitor SAHA led to detectable clusters of DNA-Pt that colocalized with the ubiquitin ligase RAD18 and the replication protein PCNA.

View Article and Find Full Text PDF

We have synthesized a collection of quinolizinium fluorescent dyes for the purpose of cell imaging. Preliminary biological studies in human U2OS osteosarcoma cancer cells have shown that different functional groups appended to the cationic quinolizinium scaffold efficiently modulate photophysical properties but also cellular distribution. While quinolizinium probes are known nuclear staining reagents, we have identified a particular quinolizinium derivative salt that targets the lysosomal compartment.

View Article and Find Full Text PDF

Artesumycin is a fluorescent hybrid of the natural products marmycin A and artemisinin. It was designed to combine the lysosomotropic properties of the angucycline and the iron-reactive capacity of the endoperoxide to target the lysosomal compartment of cancer cells. Herein, we show that artesumycin inhibits cancer cell proliferation in an iron-dependent manner and chemically fragments in vitro in the presence of redox-active iron(ii).

View Article and Find Full Text PDF

Sirtuins, NAD(+) -dependent histone deacetylases (HDACs), have recently emerged as potential therapeutic targets for the treatment of a variety of diseases. The discovery of potent and isoform-selective inhibitors of this enzyme family should provide chemical tools to help determine the roles of these targets and validate their therapeutic value. Herein, we report the discovery of a novel class of highly selective SIRT2 inhibitors, identified by pharmacophore screening.

View Article and Find Full Text PDF