Raising insects in a laboratory for release into the wild is a common conservation practice, but maintaining breeding colonies year-round can be limited by seasonal food availability. Food availability is particularly challenging for insects which depend on specific host plants. For example, our early efforts to rear the imperiled Atala hairstreak butterfly (Eumaeus atala Poey) resulted in colony failure during winter due to lack of food.
View Article and Find Full Text PDFClimate change has caused many ecological changes around the world. Altered phenology is among the most commonly observed effects of climate change, and the list of species interactions affected by altered phenology is growing. Although many studies on altered phenology focus on single species or on pairwise species interactions, most ecological communities are comprised of numerous, ecologically similar species within trophic groups.
View Article and Find Full Text PDFClimate change can influence consumer populations both directly, by affecting survival and reproduction, and indirectly, by altering resources. However, little is known about the relative importance of direct and indirect effects, particularly for species important to ecosystem functioning, like pollinators. We used structural equation modelling to test the importance of direct and indirect (via floral resources) climate effects on the interannual abundance of three subalpine bumble bee species.
View Article and Find Full Text PDFClimate change has had numerous ecological effects, including species range shifts and altered phenology. Altering flowering phenology often affects plant reproduction, but the mechanisms behind these changes are not well-understood. To investigate why altering flowering phenology affects plant reproduction, we manipulated flowering phenology of the spring herb Claytonia lanceolata (Portulacaceae) using two methods: in 2011-2013 by altering snow pack (snow-removal vs.
View Article and Find Full Text PDFEnvironmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration.
View Article and Find Full Text PDF