Pultruded carbon fiber-reinforced composites are attractive to the wind energy industry due to the rapid production of highly aligned unidirectional composites with enhanced fiber volume fractions and increased specific strength and stiffness. However, high volume carbon fiber manufacturing remains cost-prohibitive. This study investigates the feasibility of a pultruded low-cost textile carbon fiber-reinforced epoxy composite as a promising material in spar cap production was undertaken based on mechanical response to four-point flexure loading.
View Article and Find Full Text PDFUnderstanding the mechanical behavior of heterogeneous materials is becoming increasingly crucial across various fields, including aerospace engineering, composite materials development, geology, and biomechanics. While substantial literature exists on this topic, conventional methods often rely on commercial software packages. This study presents a framework for computed tomography (CT) scan-based finite element (FE) analysis of such materials using open-source software in most of the workflow.
View Article and Find Full Text PDF