Publications by authors named "Zachariah A Pittman"

Over the past decade, the production of biofuels from lignocellulosic biomass has steadily increased to offset the use of fuels from petroleum. To make biofuels cost-competitive, however, it is necessary to add value to the "ligno-" components (up to 30% by mass) of the biomass. The properties of lignin, in terms of molecular weight (MW), chemical functionality, and mineral impurities often vary from biomass source and biorefinery process, resulting in a challenging precursor for product development.

View Article and Find Full Text PDF

Full-spectrum flow cytometry has increased antibody-based multiplexing, yet further increases remain potentially impactful. We recently proposed how fluorescence multiplexing using spectral imaging and combinatorics (MuSIC) could do so using tandem dyes and an oligo-based antibody labeling method. In this work, we found that such labeled antibodies had significantly lower signal intensities than conventionally labeled antibodies in human cell experiments.

View Article and Find Full Text PDF

Full-spectrum flow cytometry has increased antibody-based multiplexing, yet further increases remain potentially impactful. We recently proposed how fluorescence Multiplexing using Spectral Imaging and Combinatorics (MuSIC) could do so using tandem dyes and an oligo-based antibody labeling method. In this work, we found that such labeled antibodies had significantly lower signal intensity than conventionally-labeled antibodies in human cell experiments.

View Article and Find Full Text PDF

Multiangle light scattering (MALS) was used to determine the absolute molar mass of fluorescent macromolecules. It is standard protocol to install bandwidth filters before MALS detectors to suppress detection of fluorescent emissions. Fluorescence can introduce tremendous error in light scattering measurements and is a formidable challenge in accurately characterizing fluorescent macromolecules and particles.

View Article and Find Full Text PDF

Nanoparticle based chemical sensor arrays with four types of organo-functionalized gold nanoparticles (AuNPs) were introduced to classify 35 different teas, including black teas, green teas, and herbal teas. Integrated sensor arrays were made using microfabrication methods including photolithography and lift-off processing. Different types of nanoparticle solutions were drop-cast on separate active regions of each sensor chip.

View Article and Find Full Text PDF