Defect-mediated energy transfer is an energy transfer process between midgap electronic states in a semiconductor nanocrystal (NC) and molecular acceptors, such as fluorescent dye molecules. Super-resolution fluorescence microscopy represents an exciting technique for pinpointing the nanoscale positions of lattice defect sites in, for example, a micrometer-sized particle or thin film sample by spatially resolving the location of the acceptor dye molecules with nanometer resolution. Toward this goal, our group performed ensemble-level, time-resolved fluorescence spectroscopy measurements of ZnO NC/Alexafluor 555 (A555) mixtures and calculated that the emissive defect sites are located, on average, 0.
View Article and Find Full Text PDFNanostructured heaters based on laser-induced graphene (LIG) are promising for heat generation and temperature control in a variety of applications due to their high efficiency as well as a fast, facile, and highly scalable fabrication process. While recent studies have shown that LIG can be written on a wide range of precursors, the reports on LIG-based heaters are mainly limited to polyimide film substrates. Here, we develop and characterize nanostructured heaters by direct writing of laser-induced graphene on nonuniform and structurally porous aramid woven fabric.
View Article and Find Full Text PDFUnderstanding how particle size and morphology influence ion insertion dynamics is critical for a wide range of electrochemical applications including energy storage and electrochromic smart windows. One strategy to reveal such structure-property relationships is to perform transmission electron microscopy (TEM) of nanoparticles that have been cycled on TEM grid electrodes. One drawback of this approach is that images of some particles are correlated with the electrochemical response of the entire TEM grid electrode.
View Article and Find Full Text PDFEnergy transfer measurements are widely used to measure the distance between donors and acceptors in heterogeneous environments. In nanocrystal (NC)-molecule donor-acceptor systems, NC defects can participate in electronic energy transfer (EnT) in a defect-mediated EnT process. Here, we explore whether ensemble-level spectroscopy measurements can quantify the distance between the donor defect sites in the NC and acceptor molecules.
View Article and Find Full Text PDFA selenium nanoparticle binding peptide was isolated from a phage display library and genetically fused to a metalloid reductase that reduces selenite (SeO) to a Se nanoparticle (SeNP) form. The fusion of the Se binding peptide to the metalloid reductase regulates the size of the resulting SeNP to ∼35 nm average diameter, where without the peptide, SeNPs grow to micron sized polydisperse precipitates. The SeNP product remains associated with the enzyme/peptide fusion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Substrates influence the electrical and optical properties of monolayer (ML) MoS in field-effect transistors and photodetectors. Photoluminescence (PL) and Raman spectroscopy measurements have shown that conducting substrates can vary the doping concentration and influence exciton decay channels in ML-MoS. Doping and exciton decay dynamics are expected to play a major role in the efficiency of light-driven chemical reactions, but it is unclear to what extent these factors contribute to the photo(electro)catalytic properties of ML-MoS.
View Article and Find Full Text PDFNanoparticle electrodes are attractive for electrochemical energy storage applications because their nanoscale dimensions decrease ion transport distances and generally increase ion insertion/extraction efficiency. However, nanoparticles vary in size, shape, defect density, and surface composition, which warrants their investigation at the single-nanoparticle level. Here we demonstrate a nondestructive high-throughput electro-optical imaging approach to quantitatively measure electrochemical ion insertion reactions at the single-nanoparticle level.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2019
Understanding light-matter interactions in transition-metal dichalcogenides (TMDs) is critical for optoelectronic device applications. Several studies have shown that high intensity light irradiation can tune the optical and physical properties of pristine TMDs. The enhancement in optoelectronic properties has been attributed to a so-called laser annealing effect that heals chalcogen vacancies.
View Article and Find Full Text PDFNitrite coordination to heme cofactors is a key step in the anaerobic production of the signaling molecule nitric oxide (NO). An ambidentate ligand, nitrite has the potential to coordinate via the N- (nitro) or O- (nitrito) atoms in a manner that can direct its reactivity. Distinguishing nitro vs nitrito coordination, along with the influence of the surrounding protein, is therefore of particular interest.
View Article and Find Full Text PDF