In this paper, using the intrinsically disordered oncoprotein Myc as an example, we present a mathematical model to help explain how protein oscillatory dynamics can influence state switching. Earlier studies have demonstrated that, while Myc overexpression can facilitate state switching and transform a normal cell into a cancer phenotype, its downregulation can reverse state-switching. A fundamental aspect of the model is that a Myc threshold determines cell fate in cells expressing p53.
View Article and Find Full Text PDFThe Cambridge Structural Database (CSD) was used to obtain flattening factors to describe the overall anisotropy of nonbonding van der Waals (vdW) contacts between several main group elements. The method for obtaining the flattening factors is based on a novel minimization process. Results show that the vdW contact distances are significantly dependent on the environment and the orientations of the surrounding covalently bonded atoms: head-on vdW contacts are generally shorter than sideways contacts in overall agreement with earlier results by Nyburg and Faerman (Acta Crystallogr.
View Article and Find Full Text PDF