Publications by authors named "Zaca-Moran P"

A global issue that requires attention is the duality between the shortage of needles for regular vaccination campaigns and the exponential increase in syringe and needle waste from such campaigns, which has been exacerbated by the COVID-19 pandemic. In response to this problem, this study presents a 3D printed needleless injector based on thermocavitation. The work focused on investigating the interaction of the resulting liquid jets with skin phantoms at different concentrations (1-2%), emphasizing their impact and penetration depth in a repetitive regime.

View Article and Find Full Text PDF

Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially in force sensors, as well as the properties of a conductive filler such as silver nanowires (AgNWs). In this work, the fabrication of a force sensor using AgNWs synthesized via the polyol chemical technique is presented.

View Article and Find Full Text PDF

In this study, a novel technique for the quantification of the human chorionic gonadotropin (hCG) hormone using localized surface plasmons and a tapered optical fiber decorated with gold nanoparticles (Au-NPs) is reported. The tapered optical fiber fabrication process involves stretching a single-mode optical fiber using the flame-brushing system. The waist of the tapered optical fiber reaches a diameter of 3 μm.

View Article and Find Full Text PDF

In this work, we report the experimental study of a Q-switched optical fiber laser based on graphene oxide quantum dots (GOQDs) as saturable absorber (SA). GOQDs are fabricated by carbonization and exfoliation electrospun polyacrylonitrile (PAN) fibers. The results of Fourier Transform Infrared Spectroscopy (FTIR) showed bands caused by the CHs and C[bond, double bond]O groups associated with the GOQDs.

View Article and Find Full Text PDF

The nonlinear optical response of graphene oxide quantum dots (GOQDs) fabricated by the carbonization and exfoliation of electrospun polyacrylonitrile (PAN) fibers is reported. Electrospun and carbonized fibers were characterized by SEM and XPS. SEM micrograph confirmed the formation of PAN fibers of 153.

View Article and Find Full Text PDF

Research Background: Amaranth () flour produces films with excellent barrier properties against water vapor, allowing food preservation, but the mechanical properties are poor compared to synthetic films. One strategy to improve these properties is the incorporation of nanoparticles. The particles can also serve as a vehicle for the addition of antioxidant agents into the films.

View Article and Find Full Text PDF

In this paper, we present a novel mechanism for the generation of laser pulses based on the phenomenon of thermocavitation. Thermocavitation bubbles were generated within a glass cuvette filled with copper nitrate dissolved in water, where the tip of an optical fiber was placed very close to the bubble generation region. Once the bubble is generated, it expands rapidly and the incoming laser light transmitted through the optical fiber is reflected at the vapor-solution interface and reflected back into the fiber, which is coupled to an erbium-doped fiber ring laser.

View Article and Find Full Text PDF

In the present paper, we show the experimental measurement of the growth of a microbubble created on the tip of a single mode optical fiber, in which zinc nanoparticles were photodeposited on its core by using a single laser source to carry out both the generation of the microbubble by photothermal effect and the monitoring of the microbubble diameter. The photodeposition technique, as well as the formation of the microbubble, was carried out by using a single-mode pigtailed laser diode with emission at a wavelength of 658 nm. The microbubble's growth was analyzed in the time domain by the analysis of the Fabry-Perot cavity, whose diameter was calculated with the number of interference fringes visualized in an oscilloscope.

View Article and Find Full Text PDF

The most common approach to optically generate and manipulate bubbles in liquids involves temperature gradients induced by CW lasers. In this work, we present a method to accomplish both the generation of microbubbles and their 3D manipulation in ethanol through optothermal forces. These forces are triggered by light absorption from a nanosecond pulsed laser (λ = 532 nm) at silver nanoparticles photodeposited at the distal end of a multimode optical fiber.

View Article and Find Full Text PDF

Numerical simulations using the Finite-Difference Time-Domain method were used to study the propagation of an acoustic wave within a truncated ellipsoidal cavity. Based in our simulations, a fluidic device was designed and fabricated using a 3D printer in order to focus an acoustic wave more efficiently and expel a liquid jet. The device consists of an ellipsoidal shaped chamber filled with a highly absorbent solution at the operating wavelength (1064 nm) in order to create a vapor bubble using a continuous wavelength laser.

View Article and Find Full Text PDF

The generation and manipulation of microbubbles by means of temperature gradients induced by low power laser radiation is presented. A laser beam (λ = 1064 nm) is divided into two equal parts and coupled to two multimode optical fibers. The opposite ends of each fiber are aligned and separated a distance D within an ethanol solution.

View Article and Find Full Text PDF

In this work, the influence of induced losses on the saturable absorption by zinc nanoparticles photodeposited onto the core of an optical fiber end is reported. Samples with different losses were obtained by the photodeposition technique using a continuous wave laser at 1550 nm. The nonlinear absorption of the saturable absorber was characterized by the P-scan technique using a high-gain pulsed erbium-doped fiber amplifier.

View Article and Find Full Text PDF

A high-velocity fluid stream ejected from an orifice or nozzle is a common mechanism to produce liquid jets in inkjet printers or to produce sprays among other applications. In the present research, we show the generation of liquid jets of controllable direction produced within a sessile water droplet by thermocavitation. The jets are driven by an acoustic shock wave emitted by the collapse of a hemispherical vapor bubble at the liquid-solid/substrate interface.

View Article and Find Full Text PDF

A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique.

View Article and Find Full Text PDF

In this work, the simultaneous presence of saturable (SA) and two-photon absorption (TPA) in zinc nanoparticles (ZnNPs) photodeposited onto the core of an optical fiber was studied in the nanosecond regime with the P-scan method using a high gain pulsed erbium-doped fiber amplifier. An analysis based on Mie theory was carried out to demonstrate the influence of the absorption coefficient with the particles sizes in the proximity of surface plasmon resonance (SPR). The shift from TPA to SA has been observed as the irradiance is increased.

View Article and Find Full Text PDF

The absorption of pesticide endosulfan on the surface of gold nanoparticles results from the formation of micrometric structures (1-10 μm) with irregular shape because of the aggregation of individual particles. Such aggregation of gold nanoparticles after absorption of pesticide shows a surface-enhanced Raman scattering (SERS) spectrum, whose intensity depends on the concentration of endosulfan. In addition, the discoloration of the colloidal solution and a diminishing of the intensity of the surface plasmon resonance absorption from individual particles were observed by UV-visible spectroscopy.

View Article and Find Full Text PDF

This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium.

View Article and Find Full Text PDF

An experimental and theoretical study about selective photodeposition of metallic zinc nanoparticles onto an optical fiber end is presented. It is well known that metallic nanoparticles possess a high absorption coefficient and therefore trapping and manipulation is more challenging than dielectric particles. Here, we demonstrate a novel trapping mechanism that involves laser-induced convection flow (due to heat transfer from the zinc particles) that partially compensates both absorption and scattering forces in the vicinity of the fiber end.

View Article and Find Full Text PDF

We examine the transmission characteristics of a NOLM device using a symmetrical coupler, highly twisted fiber, and a quarter-wave (QW) retarder plate introducing a polarization asymmetry in the loop. We demonstrate high dynamic range with controllable transmissivity, and good stability over long times. We experimentally study the transmission behavior for different input polarization states and distinguish between different polarization components of the output beam.

View Article and Find Full Text PDF