Publications by authors named "Zaagsma J"

Airway inflammation and remodeling are major features of chronic obstructive pulmonary disease (COPD), whereas pulmonary hypertension is a common comorbidity associated with a poor disease prognosis. Recent studies in animal models have indicated that increased arginase activity contributes to features of asthma, including allergen-induced airway eosinophilia and mucus hypersecretion. Although cigarette smoke and lipopolysaccharide (LPS), major risk factors for COPD, may increase arginase expression, the role of arginase in COPD is unknown.

View Article and Find Full Text PDF

The novel once-daily β₂-agonist bronchodilator drug olodaterol has recently been shown to be effective in patients with allergic asthma for >24 hours. An increased cholinergic tone common to these patients may decrease the effectiveness of β₂-agonists. This could provide a rationale for combination therapy with olodaterol and the long-acting anticholinergic tiotropium to aim for a once-daily treatment regimen.

View Article and Find Full Text PDF

Increased extracellular matrix (ECM) deposition and airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma. Recently, we demonstrated that the ECM protein collagen I, which is increased surrounding asthmatic ASM, induces a proliferative, hypocontractile ASM phenotype. Little is known, however, about the signaling pathways involved.

View Article and Find Full Text PDF

Transforming growth factor-β₁ (TGF-β₁) is a central mediator in tissue remodeling processes, including fibrosis and airway smooth muscle (ASM) hyperplasia, as observed in asthma. The mechanisms underlying this response, however, remain unclear because TGF-β₁ exerts only weak mitogenic effects on ASM cells. In this study, we hypothesized that the mitogenic effect of TGF-β₁ on ASM is indirect and requires prolonged exposure to allow for extracellular matrix (ECM) deposition.

View Article and Find Full Text PDF

Since ancient times, anticholinergics have been used as a bronchodilator therapy for obstructive lung diseases. Targets of these drugs are G-protein-coupled muscarinic M(1), M(2) and M(3) receptors in the airways, which have long been recognized to regulate vagally-induced airway smooth muscle contraction and mucus secretion. However, recent studies have revealed that acetylcholine also exerts pro-inflammatory, pro-proliferative and pro-fibrotic actions in the airways, which may involve muscarinic receptor stimulation on mesenchymal, epithelial and inflammatory cells.

View Article and Find Full Text PDF

Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to increased airway narrowing in asthma. Increased ASM mass may be caused by exposure to mitogens, including platelet-derived growth factor (PDGF) and collagen type I, which induce a proliferative, hypocontractile ASM phenotype. In contrast, prolonged exposure to insulin induces a hypercontractile phenotype.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is an inflammatory disease, characterized by a progressive decline in lung function. Airway smooth muscle (ASM) mass may be increased in COPD, contributing to airflow limitation and proinflammatory cytokine production. Cigarette smoke (CS), the major risk factor of COPD, causes ASM cell proliferation, as well as interleukin-8 (IL-8)-induced neutrophilia.

View Article and Find Full Text PDF
Article Synopsis
  • Airway smooth muscle (ASM) can switch between contractile and proliferative states, affecting asthma severity through increased muscle mass and airway responsiveness.
  • Exposure to collagen I and PDGF reduces contractility and contractile protein levels in human tracheal smooth muscle, promoting cell proliferation instead.
  • This study suggests that collagen I and PDGF may contribute to airway remodeling in asthma by driving ASM towards a less contractile, more proliferative phenotype.
View Article and Find Full Text PDF

Increased airway smooth muscle (ASM) mass is a major feature of airway remodeling in asthma and chronic obstructive pulmonary disease. Growth factors induce a proliferative ASM phenotype, characterized by an increased proliferative state and a decreased contractile protein expression, reducing contractility of the muscle. Transforming growth factor-β-activated kinase 1 (TAK1), a mitogen-activated protein kinase kinase kinase, is a key enzyme in proinflammatory signaling in various cell types; however, its function in ASM is unknown.

View Article and Find Full Text PDF

Airway remodelling and emphysema are major structural abnormalities in chronic obstructive pulmonary disease (COPD). In addition, pulmonary vascular remodelling may occur and contribute to pulmonary hypertension, a comorbidity of COPD. Increased cholinergic activity in COPD contributes to airflow limitation and, possibly, to inflammation and airway remodelling.

View Article and Find Full Text PDF

Airway remodelling, characterised by increased airway smooth muscle (ASM) mass, subepithelial fibrosis, goblet cell hyperplasia and mucus gland hypertrophy, is a feature of chronic asthma. Increased arginase activity could contribute to these features via increased formation of polyamines and l-proline downstream of the arginase product l-ornithine, and via reduced nitric oxide synthesis. Using the specific arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH), we studied the role of arginase in airway remodelling using a guinea pig model of chronic asthma.

View Article and Find Full Text PDF

Airway smooth muscle cells exhibit phenotype plasticity that underpins their ability to contribute both to acute bronchospasm and to the features of airway remodelling in chronic asthma. A feature of mature, contractile smooth muscle cells is the presence of abundant caveolae, plasma membrane invaginations that develop from the association of lipid rafts with caveolin-1, but the functional role of caveolae and caveolin-1 in smooth muscle phenotype plasticity is unknown. Here, we report a key role for caveolin-1 in promoting phenotype maturation of differentiated airway smooth muscle induced by transforming growth factor (TGF)-β(1).

View Article and Find Full Text PDF

Background: Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hyper)contractile phenotype is dependent on laminin, which can be inhibited by the laminin-competing peptide Tyr-Ile-Gly-Ser-Arg (YIGSR). The role of laminins in ASM remodelling in chronic asthma in vivo, however, has not yet been established.

View Article and Find Full Text PDF

Background: A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM.

View Article and Find Full Text PDF

Background: Clinical information on 24-h spirometric efficacy of combining tiotropium and salmeterol compared to single-agent therapy is lacking in patients with COPD.

Methods: A randomized, double-blind, four-way crossover study of 6-week treatment periods comparing combination therapy of tiotropium 18 microg plus qd or bid salmeterol 50 microg versus single-agent therapy. Serial 24-h spirometry (FEV(1), FVC), effects on dyspnea (TDI focal score) and rescue salbutamol use were evaluated in 95 patients.

View Article and Find Full Text PDF

Rationale: Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. The mechanisms driving these changes are, however, incompletely understood. Recently, an important role for extracellular matrix proteins in regulating ASM proliferation and contractility has been found, suggesting that matrix proteins and their integrins actively modulate airway remodeling.

View Article and Find Full Text PDF

Unlabelled: Increased intrahepatic resistance and splanchnic blood flow cause portal hypertension in liver cirrhosis. Nonselective beta-adrenoceptor (beta-AR) antagonists have beneficial effects on hyperdynamic circulation and are in clinical use. In this context, the role of the beta(3)-AR is undefined.

View Article and Find Full Text PDF

Allergic asthma is a chronic inflammatory airways' disease, characterized by allergen-induced early and late bronchial obstructive reactions, airway hyperresponsiveness (AHR), airway inflammation and airway remodelling. Recent ex vivo and in vivo studies in animal models and asthmatic patients have indicated that arginase may play a central role in all these features. Thus, increased arginase activity in the airways induces reduced bioavailability of L-arginine to constitutive (cNOS) and inducible (iNOS) nitric oxide synthases, causing a deficiency of bronchodilating and anti-inflammatory NO, as well as increased formation of peroxynitrite, which may be involved in allergen-induced airways obstruction, AHR and inflammation.

View Article and Find Full Text PDF

In human bronchial epithelial (16HBE14o(-)) cells, CB(1) and CB(2) cannabinoid receptors are present, and their activation by the endocannabinoid virodhamine and the synthetic non-selective receptor agonist CP55,940 inhibits adenylyl cyclase and cellular interleukin-8 release. Here, we analyzed changes in intracellular calcium ([Ca2+](i)) evoked by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), CP55,940, and virodhamine in 16HBE14o(-) cells. Delta(9)-THC induced [Ca2+](i) increase and a large transient [Ca2+](i) mobilization, the latter probably reflecting store-depletion-driven capacitative Ca2+ entry (CCE).

View Article and Find Full Text PDF

Peroxynitrite has been shown to be crucially involved in airway hyperresponsiveness (AHR) after the late asthmatic reaction (LAR). Peroxynitrite production may result from simultaneous synthesis of nitric oxide (NO) and superoxide by inducible NO-synthase (iNOS) at low L-arginine concentrations. L-arginine availability to iNOS is regulated by its cellular uptake, which can be inhibited by eosinophil-derived polycations and by arginase, which competes with iNOS for the common substrate.

View Article and Find Full Text PDF

Airway smooth muscle (ASM) plays a key role in the development of airway hyperresponsiveness and remodeling in asthma, which may involve maturation of ASM cells to a hypercontractile phenotype. In vitro studies have indicated that long-term exposure of bovine tracheal smooth muscle (BTSM) to insulin induces a functional hypercontractile, hypoproliferative phenotype. Similarly, the extracellular matrix protein laminin has been found to be involved in both the induction and maintenance of a contractile ASM phenotype.

View Article and Find Full Text PDF

Airway hyperresponsiveness (AHR) is a hallmark clinical symptom of asthma. At least two components of AHR have been identified: 1) baseline AHR, which is persistent and presumably caused by airway remodelling due to chronic recurrent airway inflammation; and 2) acute and variable AHR, which is associated with an episodic increase in airway inflammation due to environmental factors such as allergen exposure. Despite intensive research, the mechanisms underlying acute and chronic AHR are poorly understood.

View Article and Find Full Text PDF

Rationale: In a guinea pig model of allergic asthma, using perfused tracheal preparations ex vivo, we demonstrated that L-arginine limitation due to increased arginase activity underlies a deficiency of bronchodilating nitric oxide (NO) and airway hyperresponsiveness (AHR) after the allergen-induced early and late asthmatic reaction.

Objectives: Using the same animal model, we investigated the acute effects of the specific arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) and of L-arginine on AHR after the early and late reaction in vivo. In addition, we investigated the protection of allergen-induced asthmatic reactions, AHR, and airway inflammation by pretreatment with the drug.

View Article and Find Full Text PDF