Publications by authors named "Zaĭtsev I"

Transmission lines are vital for delivering electricity over long distances, yet they face reliability challenges due to faults that can disrupt power supply and pose safety risks. This research introduces a novel approach for fault detection and classification by analyzing voltage and current patterns across transmission line phases. Leveraging a comprehensive dataset of diverse fault scenarios, various machine learning algorithms-including Random Forest (RF), K-Nearest Neighbors (KNN), and Long Short-Term Memory (LSTM) networks-are evaluated.

View Article and Find Full Text PDF

In this paper, a comprehensive energy management framework for microgrids that incorporates price-based demand response programs (DRPs) and leverages an advanced optimization method-Greedy Rat Swarm Optimizer (GRSO) is proposed. The primary objective is to minimize the generation cost and environmental impact of microgrid systems by effectively scheduling distributed energy resources (DERs), including renewable energy sources (RES) such as solar and wind, alongside fossil-fuel-based generators. Four distinct demand response models-exponential, hyperbolic, logarithmic, and critical peak pricing (CPP)-are developed, each reflecting a different price elasticity of demand.

View Article and Find Full Text PDF

Power quality (PQ) disturbances, such as voltage sags, are significant issues that can lead to damage in electrical equipment and system downtime. Detecting and classifying these disturbances accurately is essential for maintaining reliable power systems. This paper introduces a novel approach to voltage sag analysis by employing wavelet packet analysis combined with energy-based feature extraction to enhance PQ monitoring.

View Article and Find Full Text PDF

This study investigates the optimization of wind energy integration in hybrid micro grids (MGs) to address the rising demand for renewable energy, particularly in regions with limited wind potential. A comprehensive assessment of wind energy potential was conducted, and optimal sizing of standalone MGs incorporating photovoltaic (PV) systems, wind turbines (WT), and battery storage (BS) systems was performed for six regions in the Kingdom Saudi Arabia. Wind resource analysis utilizing the Weibull distribution function shows that all regions exhibited Class 1 wind energy characteristics, with average annual wind power densities ranging from 36.

View Article and Find Full Text PDF

This paper proposes an advanced Load Frequency Control (LFC) strategy for two-area hydro-wind power systems, using a hybrid Long Short-Term Memory (LSTM) neural network combined with a Genetic Algorithm-optimized PID (GA-PID) controller. Traditional PID controllers, while extensively used, often face limitations in handling the nonlinearities and uncertainties inherent in interconnected power systems, leading to slower settling time and higher overshoot during load disturbances. The LSTM + GA-PID controller mitigates these issues by utilizing LSTM's capacity to learn from historical data by using gradient descent to forecast the future disturbances, while the GA optimizes the PID parameters in real time, ensuring dynamic adaptability and improved control precision.

View Article and Find Full Text PDF

Health monitoring and analysis of photovoltaic (PV) systems are critical for optimizing energy efficiency, improving reliability, and extending the operational lifespan of PV power plants. Effective fault detection and monitoring are vital for ensuring the proper functioning and maintenance of these systems. PV power plants operating under fault conditions show significant deviations in current-voltage (I-V) characteristics compared to those under normal conditions.

View Article and Find Full Text PDF

Electric furnaces play an important role in many industrial processes where precise temperature control is essential to ensure production efficiency and product quality. Traditional proportional-integral-derivative (PID) controllers and their modified versions are commonly used to maintain temperature stability by reacting quickly to deviations. In this study, the real PID plus second-order derivative (RPIDD) controller is introduced for the first time for industrial temperature control applications, which is a novel alternative that has not yet been investigated in the literature.

View Article and Find Full Text PDF

The rapid global adoption of electric vehicles (EVs) necessitates the development of advanced EV charging infrastructure to meet rising energy demands. In particular, community parking lots (CPLs) offer significant opportunities for coordinating EVs' charging. By integrating energy storage systems (ESSs), renewable energy sources (RESs), and building prosumers, substantial reductions in peak load and electricity costs can be achieved, while simultaneously promoting environmental sustainability.

View Article and Find Full Text PDF

An energy material has been developed using a one-step chemical reduction method, incorporating silver nanoparticles (AgNPs) that encapsulate micro-sized silicon (mSi) flakes. SEM investigation revealed complete encapsulation of silicon flakes by AgNP's dendritic structure, EDX confirmed the deposition of Ag on Si flakes. Raman spectroscopy confirmed the formation of silver and silicon oxides.

View Article and Find Full Text PDF

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.

View Article and Find Full Text PDF

Microgrids (MGs) have gained significant attention over the past two decades due to their advantages in service reliability, easy integration of renewable energy sources, high efficiency, and enhanced power quality. In India, low-voltage side customers face significant challenges in terms of power supply continuity and voltage regulation. This paper presents a novel approach for optimal power scheduling in a microgrid, aiming to provide uninterrupted power supply with improved voltage regulation (VR).

View Article and Find Full Text PDF

In this paper, an improved voltage control strategy for microgrids (MG) is proposed, using an artificial neural network (ANN)-based adaptive proportional-integral (PI) controller combined with droop control and virtual impedance techniques (VIT). The control strategy is developed to improve voltage control, power sharing and total harmonic distortion (THD) reduction in the MG systems with renewable and distributed generation (DG) sources. The VIT is used to decouple active and reactive power, reduce negative power interactions between DG's and improve the robustness of the system under varying load and generation conditions.

View Article and Find Full Text PDF

Wind energy plays a crucial role as a renewable source for electricity generation, especially in remote or isolated regions without access to the main power grid. The intermittent characteristics of wind energy make it essential to incorporate energy storage solutions to guarantee a consistent power supply. This study introduces the design, modeling, and control mechanisms of a self-sufficient wind energy conversion system (WECS) that utilizes a Permanent magnet synchronous generator (PMSG) in conjunction with a Water pumping storage station (WPS).

View Article and Find Full Text PDF

Renewable energies are interesting as an alternative and sustainable resource for air conditioning applications. But initial investment cost of equipment, whose employed for converting the renewable energy into usable shape and also for air conditioning duty, are significant. Therefore, determining the optimum sizing has high priority.

View Article and Find Full Text PDF
Article Synopsis
  • - A new fault-tolerant and reconfigurable quadratic boost converter is introduced for DC microgrid applications, addressing the need for high-gain converters with improved reliability.
  • - The design features 2-level redundancy to handle faults in switches and capacitors, ensuring consistent voltage gain during normal operation and when reconfigured.
  • - Testing on a 1-kW hardware setup demonstrates that the converter maintains voltage gain while reducing voltage stress on capacitors in the reconfiguration mode, enhancing overall performance and reliability.
View Article and Find Full Text PDF

The article proposes a novel approach to assess rotor angle stability in microgrids by enhancing the Modified Galerkin Method (MGM), which is based on the Polynomial Approximation, using real-time RFID data acquisition. Due to their reliance on assumptions, traditional rotor angle stability methodologies frequently fail in online transient stability testing. MGM successfully captures the dynamic behavior of microgrids by approximating state variables using a sequence of polynomials and coefficients.

View Article and Find Full Text PDF

While the proliferation of the Internet of Things (IoT) has revolutionized several industries, it has also created severe data security concerns. The security of these network devices and the dependability of IoT networks depend on efficient threat detection. Device heterogeneity, computing resource constraints, and the ever-changing nature of cyber threats are a few of the obstacles that make detecting cyber threats in IoT systems difficult.

View Article and Find Full Text PDF

This research study presents the application of the FC-PCC (Fuzzy Logic Predictive Current Control) algorithm in the context of maximum power point tracking (MPPT) for a proton exchange membrane fuel cell system employing a three-level boost converter (TLBC). The proposed approach involves the integration of an intelligent fuzzy controller with a predictive current control strategy in order to improve the performance of MPP tracking. Initially, the utilization of fuzzy logic involves the utilization of data values obtained from the PEMFC.

View Article and Find Full Text PDF

This study introduces a novel approach for analyzing photovoltaic (PV) systems that employ block lookup tables for speedy and efficient simulation. It introduces an innovative method for tracking the Global Maximum Power Point (GMPP) by utilizing Zebra Optimization Algorithm (ZOA). The suggested method was carefully evaluated under difficult Partial Shading Conditions (PSCs) and Dynamic Shading Conditions (DSCs) to determine its global and local search capability.

View Article and Find Full Text PDF

Power electronic converters are widely used in various fields of electrical equipment. Due to their fast dynamics and non-linear nature, controlling them requires dealing with various complexities. Therefore, having a well-designed, high-speed, and robust controller is critical to ensure the effective operation of these devices.

View Article and Find Full Text PDF

MXenes, a novel class of two-dimensional (2D) materials known for their excellent electronic conductivity and hydrophilicity, have emerged as promising candidates for lithium-ion battery anodes. This study presents a simple wet-chemical method for depositing interconnected SnO nanoparticles (NPs) onto MXene sheets. The SnO NPs act as both a high-capacity energy source and a spacer to prevent MXene sheets from restacking.

View Article and Find Full Text PDF
Article Synopsis
  • The paper introduces a new method for enhancing network security and privacy through chaotic optical communication combined with a hybrid optical feedback system (HOFS), addressing common issues found in current security methods.
  • It proposes a solution called HOFS-COCS to tackle challenges like limited robustness and synchronization problems while ensuring efficient communication.
  • Two algorithms were developed for generating chaotic maps and text encryption, proving through experiments that this approach significantly improves security, synchronization, and reliable message transmission in chaotic optical communication systems.
View Article and Find Full Text PDF

This research article meticulously examines advanced power electronic converters crucial for optimizing electrolyzer perfor- mance in hydrogen production systems. It conducts a thorough review of mature electrolyzer types, detailing their specifications, electric models, manufacturers, and scalability. To meet the high current and stable DC voltage demands of industrial electrolyzers, the study delves into a broad spectrum of AC-DC and DC-DC converter topologies.

View Article and Find Full Text PDF

Bearing degradation is the primary cause of electrical machine failures, making reliable condition monitoring essential to prevent breakdowns. This paper presents a novel hybrid model for the detection of multiple faults in bearings, combining Long Short-Term Memory (LSTM) networks with random forest (RF) classifiers, further enhanced by the Grey Wolf Optimization (GWO) algorithm. The proposed approach is structured in three stages: first, time and frequency domain features are manually extracted from vibration signals; second, these features are processed by a dual-layer LSTM network, which is specifically designed to capture complex temporal relationships within the data; finally, the GWO algorithm is employed to optimize feature selection from the LSTM outputs, feeding the most relevant features into the RF classifier for fault classification.

View Article and Find Full Text PDF

DC grid fault protection techniques have previously faced challenges such as fixed thresholds, insensitivity to high-resistance faults, and dependency on specific threshold settings. These limitations can lead to elevated fault currents in the grid, particularly affecting multi-modular converters (MMCs) vulnerability to large fault current transients. This paper proposes a novel approach that combines the disjoint-based Bootstrap Aggregating (Bagging) technique and Bayesian optimization (BO) for fault detection in DC grids.

View Article and Find Full Text PDF