Publications by authors named "ZOLLMAN P"

Edmonston vaccine strains of measles virus (MV) have shown significant antitumor activity in preclinical models of ovarian cancer. We engineered MV to express the marker peptide carcinoembryonic antigen (MV-CEA virus) to also permit real-time monitoring of viral gene expression in tumors in the clinical setting. Patients with Taxol and platinum-refractory recurrent ovarian cancer and normal CEA levels were eligible for this phase I trial.

View Article and Find Full Text PDF

Gliomas have a dismal prognosis, with the median survival of patients with the most common histology, glioblastoma multiforme, being only 12-15 months. Development of novel therapeutic agents is urgently needed. We have previously demonstrated that oncolytic measles virus strains derived from the Edmonston vaccine lineage have significant antitumor activity against gliomas [Phuong, L.

View Article and Find Full Text PDF

Oncolytic measles virus strains have activity against multiple tumor types and are currently in phase I clinical testing. Induction of the heat shock protein 70 (HSP70) constitutes one of the earliest changes in cellular gene expression following infection with RNA viruses including measles virus, and HSP70 upregulation induced by heat shock has been shown to result in increased measles virus cytotoxicity. HSP90 inhibitors such as geldanamycin (GA) or 17-allylaminogeldanamycin result in pharmacologic upregulation of HSP70 and they are currently in clinical testing as cancer therapeutics.

View Article and Find Full Text PDF

Background: Recurrent gliomas have a dismal outcome despite use of multimodality treatment including surgery, radiation therapy and chemotherapy.

Objective: In this article the authors discuss potential applications of oncolytic measles virus strains as novel antitumor agents in the treatment of gliomas.

Methods: Important aspects of measles virus development as an anticancer therapeutic agent including engineering, retargeting and combination studies with other therapeutic modalities are discussed.

View Article and Find Full Text PDF

Purpose: Glioblastoma multiforme is the most frequent primary brain tumor in adults and represents one of the most lethal malignancies with a median survival of 12-16 months. We have previously shown that an oncolytic measles virus derivative expressing soluble human carcinoembryonic antigen (MV-CEA) has significant antitumor activity against glioblastoma multiforme cell lines and xenografts. Radiation therapy (RT) represents one of the mainstays of glioma treatment.

View Article and Find Full Text PDF

A retargeted measles virus strain MV-GFP-H(AA)-scEGFR was generated by engineering the MV-NSe Edmonston vaccine strain to incorporate both CD46 (Y481A) and signaling lymphocyte activation molecule (SLAM) (R533A) ablating mutations in the hemagglutinin protein in combination with the display of a single-chain antibody against epidermal growth factor receptor (EGFR) at the C terminus of hemagglutinin. The unmodified MV-GFP virus was used as a positive control. Specificity of the EGFR retargeted virus was demonstrated in non-permissive Chinese hamster ovary (CHO) cells stably transfected to express either the natural receptors CD46 or SLAM or the target receptors EGFR and EGFRvIII.

View Article and Find Full Text PDF

Breast cancer is the most common malignancy and the second leading cause of female cancer mortality in the United States. There is an urgent need for development of novel therapeutic approaches. In this study, we investigated the antitumor potential of a novel viral agent, an attenuated strain of measles virus deriving from the Edmonston vaccine lineage, genetically engineered to produce carcinoembryonic antigen (CEA) against breast cancer.

View Article and Find Full Text PDF

The presence of or induction of an active glyoxylate cycle (GC) in the dormant black bear whose sole source of energy is body fat is an attractive concept which would allow lipid (acetate) to be directed from oxidation via the tricarboxylic acid cycle to many biosynthetic pathways. However, in spite of earlier claims, the present report establishes that isocitrate lyase and malate synthetase, GC marker enzymes, could not be detected in liver or kidney of active or dormant bears; liver peroxisome numbers were similar. The absence of brown fat (by light microscopy) and of the GC enzymes in the dormant bear raises questions about the prior report.

View Article and Find Full Text PDF

The peripheral nerve of experimental diabetic neuropathy (EDN) is reported to be ischemic and hypoxic, with an increased dependence on anaerobic metabolism, requiring increased energy substrate stores. When glucose stores become reduced, fiber degeneration has been reported. We evaluated glucose uptake, nerve energy metabolism, the polyol pathway, and protein kinase C (PKC) activity in EDN induced by streptozotocin.

View Article and Find Full Text PDF

The pathophysiology of ischemic fiber degeneration (IFD) is not known, but mechanisms involved during nerve ischemia differ from those during reperfusion. We have previously demonstrated hypothermic neuroprotection of peripheral nerve from IFD. We now evaluate the efficacy of hypothermia in the intraischemic vs.

View Article and Find Full Text PDF

Background: Reperfusion aggravates nerve ischemic fiber degeneration, likely by the generation of reduced oxygen species. We therefore evaluated if racemic alpha-lipoic acid (LA), a potent antioxidant, will protect peripheral nerve from reperfusion injury, using our established model of ischemia-reperfusion injury.

Methods: We used male SD rats, 300+/-5 g.

View Article and Find Full Text PDF

Although there is much information on experimental ischaemic neuropathy, there are only scant data on neuroprotection. We evaluated the effectiveness of hypothermia in protecting peripheral nerve from ischaemia-reperfusion injury using the model of experimental nerve ischaemia. Forty-eight male Sprague-Dawley rats were divided into six groups.

View Article and Find Full Text PDF
Black bear (Ursus americanus) bile composition: seasonal changes.

Comp Biochem Physiol C Pharmacol Toxicol Endocrinol

November 1997

Gallbladder contents from 8 active and 14 dormant black bears were analyzed for individual bile acids by high-performance liquid chromatography and for cholesterol, phospholipids, sodium, potassium, calcium, magnesium, zinc, iron, and copper. Only three bile acids occurring as taurine conjugates were detected: tauroursodeoxycholate, taurochenodeoxycholate, and taurocholate. The proportion of tauroursodeoxycholate to the sum of the three bile acids decreased.

View Article and Find Full Text PDF

We studied blood flow rates along the sciatic nerve and in the superior cervical and L-5 dorsal root ganglia of rats at rest and during reductions and increases in mean arterial pressure induced by partial exsanguination or blood transfusion. Blood flow was measured by the tissue distribution of [14C]iodoantipyrine and autoradiography. At rest, blood flow did not vary along the peripheral nerve, but was two to three times greater in dorsal root and superior cervical ganglia.

View Article and Find Full Text PDF

Vascular perfusion and neuropathologic evaluation of the lumbar spinal roots and dorsal root ganglia (DRG) were studied in rats with longstanding (duration 12-15 months) streptozotocin-induced diabetes and age- and sex-matched control rats. We also undertook nerve conduction studies including F-wave recordings and measured blood flow in sciatic nerve, DRG, and superior cervical ganglion (SCG). Light microscopically, changes of the myelin sheath in the dorsal and ventral roots and vacuolated cells in the DRG were the major findings, being significantly higher in diabetic rats than in control rats.

View Article and Find Full Text PDF

We evaluated the nerve blood flow (NBF), light and electron microscopy, and adrenergic innervation of rat sciatic nerve at 2-45 days after the application of four loose ligatures. Ischemia developed at the lesion edge, creating an endoneurial dam. Calcitonin gene-related peptide, norepinephrine and NBF were increased within the lesion.

View Article and Find Full Text PDF

Although the neuropathology of ischemic fiber degeneration (IFD) is relatively well known, its pathogenesis is poorly understood. One putative mechanism of IFD is oxidative stress, causing a breakdown of the blood-nerve barrier (BNB) and lipid peroxidation. We evaluated the effect of ischemic reperfusion of rat sciatic-tibial nerve seeking biochemical and pathologic evidence of BNB disruption and lipid peroxidation.

View Article and Find Full Text PDF

Insulin administration can cause or worsen experimental and human diabetic neuropathy ("insulin neuritis"). In this study, we tested the hypothesis that insulin administration impairs tissue oxygenation. We infused insulin under nonhypoglycemic conditions and evaluated its effect on endoneurial oxygen tension, nerve blood flow, and the oxyhemoglobin dissociation curve of peripheral nerve in normal and diabetic rats.

View Article and Find Full Text PDF

We sought to determine whether chronic guanethidine (Gu) treatment in adult rats produces depletion of sympathetic neurons and hyperinnervation by sensory neuropeptides in the celiac/superior mesenteric (C/SMG) ganglion. Rats received Gu 40 mg/kg per day i.p or saline for 5 weeks.

View Article and Find Full Text PDF

Microsphere embolization of peripheral nerve results in a variable degree of ischemic fiber degeneration. To enhance the utility of the model, we evaluated the relationship between dose of microspheres to the supplying arteries of the sciatic-tibial nerve to nerve blood flow (NBF), electrophysiology, morphology, and behavioral changes. There was considerable variability in the effect of embolization on nerve pathology in individual nerves.

View Article and Find Full Text PDF

Adult rats received intraperitoneal injections of guanethidine or saline for 5 weeks. Six to 8 weeks following completion of treatment, concentrations of substance P and neuropeptide Y (NPY) were measured by radioimmunoassay in the superior cervical ganglion (SCG) and thoracic spinal cord. The SCG was also immunostained for NPY and substance P.

View Article and Find Full Text PDF

Our model of severe nerve ischemia consistently results in extinction of the compound nerve and muscle action potentials (NAP; CMAP) within 30 min. Since impulse transmission may depend on nerve energy metabolism (NEM), we studied the effects of ischemia with reperfusion on sciatic-tibial nerve NEM in vivo and compared these results with NEM of this nerve in deoxygenated Ringer's solution in vitro and postmortem. Ischemia for 30 min postmortem or in deoxygenated Ringer's solution resulted in marked depletion of adenosine triphosphate (ATP) and creatine phosphate (CP) and an increase in lactate (LAC) of sciatic-tibial nerve of adult male Sprague-Dawley rats.

View Article and Find Full Text PDF

The muscarinic cholinergic receptor of rat eccrine sweat gland was characterized using quantitative autoradiography and [3H]QNB as radioligand. The distribution of radioligand was maximal in the secretory coil. Autoradiographic competition binding studies were performed using selective antagonists to M1 (pirenzepine), M2 (AF-DX 116), and M3 (4-DAMP) and the classical nonselective antagonist atropine.

View Article and Find Full Text PDF

The use of bowel segments for bladder replacement or augmentation has been associated with metabolic complications and obstruction due to mucus production. Establishment of a transitional epithelium over the de-epithelialized surface of a segment of intestine might alleviate these complications. Twenty Holstein bull calves underwent sigmoidocystoplasty.

View Article and Find Full Text PDF