Publications by authors named "ZAREBA J"

Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.

View Article and Find Full Text PDF

This study investigates lead-free organic-inorganic hybrids (CNH)[BiCl] () and (CNH)[BiBr] (), focusing on their structural, dielectric, ferroelectric, and optical properties. Both compounds exhibit paraelectric () to ferroelectric () phase transitions (PTs) at 230/233 K and 228/229 K, respectively, transitioning from orthorhombic () to monoclinic (2) phases, with distorted [BiX] octahedra forming 1D chains. Quasielastic neutron scattering and solid-state H NMR studies reveal the localized motion of azetidinium cations.

View Article and Find Full Text PDF

Two-dimensional lead halide perovskites represent a fascinating class of hybrid semiconductors for solar cell, light-emitting, nonlinear optical (NLO), and ferroelectric applications. A notable subset within this category is luminescent ferroelectrics, which have garnered considerable attention for their potential in integrated photoelectronic devices. In this study, we employed an organic amine halogenation strategy (also referred to as halogen engineering), which is renowned for its efficacy in inducing polar order through crystal engineering.

View Article and Find Full Text PDF

Metal phosphonate-carboxylate compounds represent a promising class of materials for proton conduction applications. This study investigates the structural, thermal, and proton conduction properties of three groups of lanthanide-based compounds derived from 5-(dihydroxyphosphoryl)isophthalic acid (PiPhtA). The crystal structures, solved from X-ray powder diffraction data, reveal that groups , Ln[OP-CH(COO)(COOH)(HO)] (Ln = La, Pr), and , Ln{[OP-CH(COO)(COOH)](HO)}·2HO (Ln = La, Pr, Eu), exhibit three-dimensional frameworks, while group , Ln[OP-CH(COO)(COOH)(HO)] (Ln = Yb), adopts a layered structure with unbonded carboxylic groups oriented toward the interlayer region.

View Article and Find Full Text PDF
Article Synopsis
  • Microglia are special brain cells that help with brain health and development by cleaning up dead neurons.
  • In a disease called Niemann-Pick type C, microglia change shape and become less effective at their job when a protein called NPC1 is missing.
  • Researchers used zebrafish to show that without NPC1, microglia gather too much cholesterol and their “cleaning spots” get bigger, making them more sensitive to dying brain cells, which could help in understanding the disease better.
View Article and Find Full Text PDF

The phenomenon of dielectric switching has garnered considerable attention due to its potential applications in electronic and photonic devices. Typically, hybrid organic-inorganic perovskites, HOIPs, exhibit a binary (low-high) dielectric state transition, which, while useful, represents only the tip of the iceberg in terms of functional relevance. One way to boost the versatility of applications is the discovery of materials capable of nonbinary switching schemes, such as three-state dielectric switching.

View Article and Find Full Text PDF

Ionic cocrystals with hydrogen bonding can form exciting materials with enhanced optical and electronic properties. We present a highly moisture-stable ammonium salt cocrystal [CHCHCH(CH)NH][CHCHCH(CH)NH][PF] () crystallizing in the polar monoclinic 2 space group. The asymmetry in was induced by its chiral substituents, while the polar order and structural stability were achieved by using the octahedral PF anion and the consequent formation of salt cocrystal.

View Article and Find Full Text PDF

Halogenobismuthate(III) compounds are of recent interest because of their low toxicity and distinct electrical properties. The utility of these materials as ferroelectrics for piezoelectric energy harvesters is still in its early stages. Herein, we report a hybrid ammonium halogenobismuthate(III) , crystallizing in a ferroelectrically active polar noncentrosymmetric 2 space group.

View Article and Find Full Text PDF

This study revisits a (001)-oriented layered lead chloride templated by 1,2,4-triazolium, TzPbCl, which recently has been an object of intense research but still suffers from gaps in characterization. Indeed, the divergent reports on the crystal structures of TzPbCl at various temperatures, devoid of independent verification of chiral phases through second harmonic generation (SHG), have led to an unresolved debate regarding the existence of a low-temperature phase transition (PT) and the noncentrosymmetric nature of the low-temperature phase. Now, by combining differential scanning calorimetry, single-crystal X-ray diffraction, dielectric, as well as linear and nonlinear optical spectroscopies on TzPbCl, we reveal a sequence of reversible PTs at = 361 K (phase I-II), = 339 K (phase II-III), and = 280 K (phase III-IV).

View Article and Find Full Text PDF
Article Synopsis
  • B-N Lewis acid-base pairs are a promising but underexplored type of electronic material that could be ideal for ferroelectric applications due to their unique charge distribution and inherent dipoles.
  • The study introduces an enantiomeric pair of B-N adducts called MBA-BF, which exhibit significant ferroelectric properties with measurable polarization and confirmatory piezoelectric characteristics.
  • The findings highlight the potential for using MBA-BF in piezoelectric energy harvesting, achieving a notable open circuit voltage of 6.2 V, indicating their usefulness in practical applications.
View Article and Find Full Text PDF

We explore the crystal structure and luminescent properties of a new 1D organic-inorganic hybrid, MHySbI, based on methylhydrazine. The compound reveals the red photoluminescence (PL) originating from the 5s electron pairs of Sb(III) as well as complex structural behavior. MHySbI crystalizes in two polymorphic forms ( and ) with distinct thermal properties and structural characteristics.

View Article and Find Full Text PDF

Hybrid organic-inorganic lead halide perovskites are promising candidates for next-generation solar cells, light-emitting diodes, photodetectors, and lasers. The structural, dynamic, and phase-transition properties play a key role in the performance of these materials. In this work, we use a multitechnique experimental (thermal, X-ray diffraction, Raman scattering, dielectric, nonlinear optical) and theoretical (machine-learning force field) approach to map the phase diagrams and obtain information on molecular dynamics and mechanism of the structural phase transitions in novel 3D AZRPbX perovskites (AZR = aziridinium; X = Cl, Br, I).

View Article and Find Full Text PDF

Cyclophosphazenes offer a robust and easily modifiable platform for a diverse range of functional systems that have found applications in a wide variety of areas. Herein, for the first time, it reports an organophosphazene-based supramolecular ferroelectric [(PhCH NH) P N Me]I, [PMe]I. The compound crystallizes in the polar space group Pc and its thin-film sample exhibits remnant polarization of 5 µC cm .

View Article and Find Full Text PDF

Three-dimensional printing (3DP) is an emerging technology to fabricate complex architectures, necessary to realize state-of-the-art flexible and wearable electronic devices. In this regard, top-performing devices containing organic ferro- and piezoelectric compounds are desired to circumvent significant shortcomings of conventional piezoceramics, toxicity and high-temperature device processibility. Herein, we report on a 3D-printed composite of a chiral ferroelectric organic salt {[MeCCH(Me)NH][BF]} (1) with a biodegradable polycaprolactone (PCL) polymer that serves as a highly efficient piezoelectric nanogenerator (PENG).

View Article and Find Full Text PDF

Halobismuthates(III) and haloantimonates(III) with the RMX chemical composition create a new and broadly unexplored class of ferroelectric compounds. In this paper, we report the haloantimonate(III) ferroelectric comprising an aromatic (1,2,4-triazolium) cation, i.e.

View Article and Find Full Text PDF

The ferroelectric behaviour of an octahedral cage [[Ni(HO)(TPTA)]·(NO)·36HO] (1) exhibiting high remnant polarization of 25.31 μC cm is discovered. For the first time, clear domain structures and the characteristic electromechanical responses are demonstrated using piezoresponsive force microscopy for a thin film of 1.

View Article and Find Full Text PDF

Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A BX type cyanometallate [Ph ( PrNH) P] [Fe(CN) ] (1), which shows a ferroelectric saturation polarization (P ) of 3.71 μC cm .

View Article and Find Full Text PDF

The rational design of metal-organic frameworks (MOFs) is one of the driving forces behind the great success that this class of materials is experiencing. The so-called isoreticular approach is a key design tool, very often used to tune the size, steric properties, and additional functional groups of the linker used. In this work, we go one step further and show that even linkers with two different coordinating groups, namely, phosphonate and phosphinate, can form isoreticular MOFs.

View Article and Find Full Text PDF

Two-dimensional (2D) lead halide perovskites are a family of materials at the heart of solar cell, light-emitting diode, and photodetector technologies. This perspective leads to a number of synthetic efforts toward materials of this class, including those with prescribed polar architectures. The methylhydrazinium (MHy) cation was recently presumed to have an unusual capacity to generate non-centrosymmetric perovskite phases, despite its intrinsically nonchiral structure.

View Article and Find Full Text PDF

Hybrid organic-inorganic lead halide perovskites have emerged as promising materials for various applications, including solar cells, light-emitting devices, dielectrics, and optical switches. In this work, we report the synthesis, crystal structures, and linear and nonlinear optical as well as dielectric properties of three imidazolium lead bromides, IMPbBr, IMPbBr, and IMPbBr (IM = imidazolium). We show that these compounds exhibit three distinct structure types.

View Article and Find Full Text PDF

Hybrid organic-inorganic perovskites comprising hypophosphite ligands are emerging functional materials exhibiting magnetic, photoluminescence, negative thermal expansion and negative linear compressibility behaviours. This work reports five novel hypophosphite perovskites, [A]M(HPOO) (A = pyrrolidinium (PYR), guanidinium (GUA) and imidazolium (IM); M = Cd and Co). [GUA]Cd(HPOO), [IM]Cd(HPOO), [GUA]Co(HPOO) and [IM]Co(HPOO) belong to the centrosymmetric trigonal 3̄, monoclinic 2/, monoclinic 2/, and orthorhombic space groups, respectively, while [PYR]Cd(HPOO) crystallizes in the noncentrosymmetric orthorhombic space group 2.

View Article and Find Full Text PDF

Bismuth containing hybrid molecular ferroelectrics are receiving tremendous attention in recent years owing to their stable and non-toxic composition. However, these perovskite-like structures are primarily limited to ammonium cations. Herein, we report a new phosphonium based discrete perovskite-like hybrid ferroelectric with a formula [Me(Ph) P] [Bi Br ] (MTPBB) and its mechanical energy harvesting capability.

View Article and Find Full Text PDF

Hybrid organic-inorganic perovskites providing integrated functionalities for multimodal switching applications are widely sought-after materials for optoelectronics. Here, we embark on a study of a novel pyrrolidinium-based cyanide perovskite of formula (CHN)KCr(CN), which displays thermally driven bimodal switching characteristics associated with an order-disorder phase transition. Dielectric switching combines two features important from an application standpoint: high permittivity contrast (Δε' = 38.

View Article and Find Full Text PDF

Perovskite-structured compounds containing organic cations and inorganic anions have gained prominence as materials for next-generation electronic and energy devices. Hybrid materials possessing ferro- and piezoelectric properties are in recent focus for mechanical energy harvesting (nanogenerator) applications. Here, we report the ferroelectric behavior of ABX-type halogenocuprate materials supported by heteroleptic phosphonium cations.

View Article and Find Full Text PDF

Organic ferroelectrics due to their low cost, easy preparation, light weight, high flexibility and phase stability are gaining tremendous attention in the field of portable electronics. In this work, we report the synthesis, structure and ferroelectric behavior of a two-component ammonium salt 2, containing a bulky [Bn(4-BrBn)NMe ] (Bn=benzyl and 4-BrBn=4-bromobenzyl) cation and tetrahedral (BF ) anion. The structural analysis revealed the presence of rich non-classical C-H⋅⋅⋅F and C-H⋅⋅⋅Br interactions in this molecule that were quantified by Hirshfeld surface analysis.

View Article and Find Full Text PDF