Two-dimensional (2D) ion crystals may represent a promising path to scale up qubit numbers for ion trap quantum information processing. However, to realize universal quantum computing in this system, individually addressed high-fidelity two-qubit entangling gates still remain challenging due to the inevitable micromotion of ions in a 2D crystal as well as the technical difficulty in 2D addressing. Here we demonstrate two-qubit entangling gates between any ion pairs in a 2D crystal of four ions.
View Article and Find Full Text PDFDespite groundbreaking advances in the additive manufacturing of polymers, metals, and ceramics, scaled and accurate production of structured carbons remains largely underdeveloped. This work reports a simple method to produce complex carbon materials with very low dimensional shrinkage from printed to carbonized state (less than 4%), using commercially available polypropylene precursors and a fused filament fabrication-based process. The control of macrostructural retention is enabled by the inclusion of fiber fillers regardless of the crosslinking degree of the polypropylene matrix, providing a significant advantage to directly control the density, porosity, and mechanical properties of 3D printed carbons.
View Article and Find Full Text PDFPoint-of-care detection of pathogens is critical to monitor and combat viral infections. The plasmonic coupling assay (PCA) is a homogeneous assay and allows rapid, one-step, and colorimetric detection of intact viruses. However, PCA lacks sufficient sensitivity, necessitating further mechanistic studies to improve the detection performance of PCA.
View Article and Find Full Text PDFIntroduction: Prophylactic antitubercular therapy (ATT) is widely prescribed in patients with Crohn's disease (CD) receiving antitumor necrosis factor (anti-TNF) treatment. However, antitubercular agents have been demonstrated to possess profibrotic effects. We aimed to evaluate whether ATT accelerated disease progression in patients with CD receiving anti-TNF treatment.
View Article and Find Full Text PDFRapid and sensitive diagnostics of infectious diseases is an urgent and unmet need as evidenced by the COVID-19 pandemic. Here, we report a strategy, based on DIgitAl plasMONic nanobubble Detection (DIAMOND), to address this need. Plasmonic nanobubbles are transient vapor bubbles generated by laser heating of plasmonic nanoparticles (NPs) and allow single-NP detection.
View Article and Find Full Text PDFThe ability to detect pathogens specifically and sensitively is critical to combat infectious diseases outbreaks and pandemics. Colorimetric assays involving loop-mediated isothermal amplification (LAMP) provide simple readouts yet suffer from the intrinsic non-template amplification. Herein, a highly specific and sensitive assay relying on plasmonic sensing of LAMP amplicons via DNA hybridization, termed as plasmonic LAMP, is developed for the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) RNA detection.
View Article and Find Full Text PDFBackground: Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is a rare disease, which is often underdiagnosed due to its heterogeneous presentations and complex molecular genetic basis, leading to a lack of population-based epidemiology data, especially of prevalence and disease progression.
Methods: Fujian Neuromedical Centre (FNMC) is a diagnosis centre for clinical-genetic FSHD in China, and the only one employing pulsed-field gel electrophoresis (PFGE)-based Southern blotting for all FSHD1 genetic tests. Three sources distributed across all six spatial zones in China, were used to obtain information regarding FSHD1 events, namely, FNMC, Genetic and Myopathy Group (branches of the Neurology Society of the Chinese Medical Association), and "FSHD-China" (an organization supported by FSHD patients).
The article "MiR-124 affects the apoptosis of brain vascular endothelial cells and ROS production through regulating PI3K/AKT signaling pathway, by S.-W. Wang, L.
View Article and Find Full Text PDFIntroduction: Previous studies have demonstrated that autoantibodies against tumor-associated antigens (TAAs) in patients with cancer can be used as sensitive immunodiagnostic biomarkers for the detection of cancer. Most of these TAAs are involved in the tumorigenesis pathway. Cancer driver genes with intragenic mutations can promote tumorigenesis.
View Article and Find Full Text PDFUncoupling protein 1 (UCP1) is localized on the inner mitochondrial membrane and generates heat by uncoupling ATP synthesis from proton transit across the inner membrane. UCP1 is a key element of nonshivering thermogenesis and is most likely important in the regulation of body adiposity. Pigs (Artiodactyl family ) lack a functional UCP1 gene, resulting in poor thermoregulation and susceptibility to cold, which is an economic and pig welfare issue owing to neonatal mortality.
View Article and Find Full Text PDFBackground: Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
February 2015
Context: Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy. It has been demonstrated that micro-RNAs (miRNAs) are involved in the development of PTC. The miRNA-chromatin immunoprecipitation microarray assay revealed down-regulation of miR-219-5p; however, the effect of miR-219-5p on PTC cell growth remains unknown.
View Article and Find Full Text PDF