Assessing how dominant peatland species, such as Dasiphora fruticosa, adapt to water table decline is crucial to advance understanding of their growth and survival strategies. Currently, most studies have primarily focused on their growth and biomass, with limited knowledge on the response of non-structural carbohydrates (NSCs) and physiological adaptations of these woody plants under long-term drainage. This study assessed the response of photosynthesis and transpiration rates, biomass, and NSC concentrations (including soluble sugars and starch) in the leaves, stems, and roots of D.
View Article and Find Full Text PDFXylem plasticity is important for trees to coordinate hydraulic efficiency and safety under changing soil water availability. However, the physiological and transcriptional regulations of cambium on xylem plasticity are not well understood. In this study, mulberry saplings of drought-resistant Wubu and drought-susceptible Zhongshen1 were subjected to moderate or severe drought stresses for 21 days and subsequently rewatered for 12 days.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Objective: To explore the changes in number and immune function of mucosal-associated invariant T (MAIT) cells in peripheral blood of patients with newly diagnosed acute myeloid leukemia (AML), and its correlation with the occurrence and development of AML.
Methods: Seventy-five clinical samples of patients with newly diagnosed AML and 48 healthy control samples in our hospital from January 2022 to February 2023 were included. Multiparametric flow cytometry was used to detect the number of MAIT cells, membrane surface markers, effector phenotypes and functional indicators in the samples.
Int Immunopharmacol
December 2024
Currently, stroke is a disease with high disability and mortality risks and no effective treatment. The pathogenesis and molecular mechanisms of neuronal damage in stroke are highly complex. Pyroptosis participates in neuronal death after stroke.
View Article and Find Full Text PDFIn eukaryotes, Target of Rapamycin (TOR), a conserved protein sensor kinase, integrates diverse environmental cues, including growth factor signals, energy availability, and nutritional status, to direct cell growth. In plants, TOR is activated by light and sugars and regulates a wide range of cellular processes, including protein synthesis and metabolism. Fatty acid synthesis is key to membrane biogenesis that is required for cell growth.
View Article and Find Full Text PDF