The binding process of insulin to its transmembrane receptor entails a sophisticated interplay between two proteins, each possessing two binding sites. Given the difficulties associated with the use of insulin in the treatment of diabetes, despite its remarkable efficacy, there is interest in smaller and more stable compounds than the native hormone that would effectively activate the receptor. Our study adopts a strategy focused on synthesizing extensive combinatorial libraries of bipodal compounds consisting of two distinct peptides linked to a molecular scaffold.
View Article and Find Full Text PDFGalectins, a class of carbohydrate-binding proteins, play a crucial role in various physiological and disease processes. Therefore, the identification of ligands that efficiently bind these proteins could potentially lead to the development of new therapeutic compounds. In this study, we present a method that involves screening synthetic click glycopeptide libraries to identify lectin-binding ligands with low micromolar affinity.
View Article and Find Full Text PDFThe development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high-throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative.
View Article and Find Full Text PDFHuman aldo-keto reductase 1C3 (AKR1C3) stereospecifically reduces steroids and prostaglandins and is involved in the biotransformation of xenobiotics. Its role in various cancers makes it a potential therapeutic target for the development of inhibitors. Recombinant AKR1C3 with a thrombin-cleavable N-terminal His tag was expressed from a pET-28(+) vector for structural studies of enzyme-inhibitor complexes.
View Article and Find Full Text PDFA novel homolog of insect defensin, designated lucifensin II (Lucilia cuprina Wiedemann [Diptera: Calliphoridae] defensin), was purified from hemolymph extract from larvae of the blowfly L. cuprina. The full-length primary sequence of this peptide of 40 amino acid residues and three intramolecular disulfide bridges was determined by electrospray ionization-orbitrap mass spectrometry and Edman degradation and is almost identical to the previously identified sequence of lucifensin (Lucilia sericata Meigen defensin).
View Article and Find Full Text PDF