The US dairy cattle genetic evaluation is currently a multistep process, including multibreed traditional BLUP estimations followed by single-breed SNP effects estimation. Single-step GBLUP (ssGBLUP) combines pedigree and genomic data for all breeds in one analysis. Unknown parent groups (UPG) or metafounders (MF) can be used to address missing pedigree information.
View Article and Find Full Text PDFBackground: Cross-validation techniques in genetic evaluations encounter limitations due to the unobservable nature of breeding values and the challenge of validating estimated breeding values (EBVs) against pre-corrected phenotypes, challenges which the Linear Regression (LR) method addresses as an alternative. Furthermore, beef cattle genetic evaluation programs confront challenges with connectedness among herds and pedigree errors. The objective of this work was to evaluate the LR method's performance under pedigree errors and weak connectedness typical in beef cattle genetic evaluations, through simulation.
View Article and Find Full Text PDFIn pig breeding, environmental challenges can affect the welfare and productivity of animals. Resilient animals have the capacity to be minimally affected by these environmental challenges. Understanding the genetic basis of sensitivity to these environmental challenges is crucial for selecting more resilient animals, thereby enhancing welfare and productivity.
View Article and Find Full Text PDFGenetic selection has been applied for many generations in animal, plant, and experimental populations. Selection changes the allelic architecture of traits to create genetic gain. It remains unknown whether the changes in allelic architecture are different for the recently introduced technique of genomic selection compared to traditional selection methods and whether they depend on the genetic architectures of traits.
View Article and Find Full Text PDFThe genetic trend of milk yield for 4 French dairy sheep breeds (Lacaune, Basco-Béarnaise, Manech Tête Noire, and Manech Tête Rousse) was partitioned in Mendelian sampling trends by categories of animals defined by sex and by selection pathways. Five categories were defined, as follows: (1) artificial insemination (AI) males (after progeny testing), (2) males discarded after progeny testing, (3) natural mating males, (4) dams of males, and (5) dams of females. Dams of males and AI males were the most important sources of genetic progress, as observed in the decomposition in Mendelian sampling trends.
View Article and Find Full Text PDF