Liver metastasis is highly aggressive and treatment-refractory, partly due to macrophage-mediated immune suppression. Understanding the mechanisms leading to functional reprogramming of macrophages in the tumor microenvironment (TME) will benefit cancer immunotherapy. Herein, we find that the scavenger receptor CD36 is upregulated in metastasis-associated macrophages (MAMs) and deletion of CD36 in MAMs attenuates liver metastasis in mice.
View Article and Find Full Text PDFAs humans spend more time indoors, ensuring acceptable indoor air quality (IAQ) through ubiquitous sensing systems has become a necessity. Although extensive studies have been conducted on the IAQ sensing systems, a holistic review of the performance and deployment of Ubiquitous IAQ Sensing (UIAQS) systems with associated requirements in IAQ sensing standards is still lacking. In this study, we first reviewed IAQ pollutants and other IAQ-related factors and the associated requirements in the prominent IAQ sensing standards.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is one of the most malignant tumors and the fourth leading cause of cancer-related death worldwide. Sorafenib is currently acknowledged as a standard therapy for advanced HCC. However, acquired resistance substantially limits the clinical efficacy of sorafenib.
View Article and Find Full Text PDFBlood phosphate levels are linked to atherosclerotic cardiovascular disease in patients with chronic kidney disease (CKD), but the molecular mechanisms remain unclear. Emerging studies indicate an involvement of hyperphosphatemia in CKD accelerated atherogenesis through disturbed cholesterol homeostasis. Here, we investigated a potential atherogenic role of high phosphate concentrations acting through aberrant activation of sterol regulatory element-binding protein (SREBP) and cleavage-activating protein (SCAP)-SREBP2 signaling in patients with CKD, hyperphosphatemic apolipoprotein E (ApoE) knockout mice, and cultured vascular smooth muscle cells.
View Article and Find Full Text PDFIn proteinuric renal diseases, excessive plasma nonesterified free fatty acids bound to albumin can leak across damaged glomeruli to be reabsorbed by renal proximal tubular cells and cause inflammatory tubular cells damage by as yet unknown mechanisms. The present study was designed to investigate these mechanisms induced by palmitic acid (PA; one of the nonesterified free fatty acids) overload. Our results show that excess PA stimulates ATP release through the pannexin 1 channel in human renal tubule epithelial cells (HK-2), increasing extracellular ATP concentration approximately threefold compared with control.
View Article and Find Full Text PDF