Correction for 'Spontaneous particle desorption and "Gorgon" drop formation from particle-armored oil drops upon cooling' by Diana Cholakova et al., Soft Matter, 2020, 16, 2480-2496, DOI: 10.1039/C9SM02354B.
View Article and Find Full Text PDFHypothesis: Micrometer sized alkane-in-water emulsion drops, stabilized by appropriate long-chain surfactants, spontaneously break symmetry upon cooling and transform consecutively into series of regular shapes (Denkov et al., Nature 2015, 528, 392). Two mechanisms were proposed to explain this phenomenon of drop "self-shaping".
View Article and Find Full Text PDFWe study how the phenomenon of drop "self-shaping" (Denkov et al., Nature, 528, 2015, 392), in which oily emulsion drops undergo a spontaneous series of shape transformations upon emulsion cooling, is affected by the presence of adsorbed solid particles, like those used in Pickering emulsion stabilization. Experiments with several types of latex particles, and with added surfactant of low concentration to enable drop self-shaping, revealed several new unexpected phenomena: (1) adsorbed latex particles rearranged into regular hexagonal lattices upon freezing of the surfactant adsorption layer.
View Article and Find Full Text PDFIn several recent studies, we showed that micrometer-sized oil-in-water emulsion droplets from alkanes, alkenes, alcohols, triglycerides, or mixtures of these components can spontaneously "self-shape" upon cooling into various regular shapes, such as regular polyhedrons, platelets, rods, and fibers ( Denkov , N. , Nature 2015 , 528 , 392 ; Cholakova , D. , Adv.
View Article and Find Full Text PDF