Publications by authors named "Z T Schafer"

The overproduction of cells and subsequent production of debris is a universal principle of neurodevelopment. Here, we show an additional feature of the developing nervous system that causes neural debris-promoted by the sacrificial nature of embryonic microglia that irreversibly become phagocytic after clearing other neural debris. Described as long-lived, microglia colonize the embryonic brain and persist into adulthood.

View Article and Find Full Text PDF

Ferroptosis is a non-apoptotic form of cell death resulting from the iron-dependent accumulation of lipid peroxides. Colorectal cancer (CRC) cells accumulate high levels of intracellular iron and reactive oxygen species (ROS) and are thus particularly sensitive to ferroptosis. The compound (S)-RSL3 ([1S,3R]-RSL3) is a commonly used ferroptosis inducing compound that is currently characterized as a selective inhibitor of the selenocysteine containing enzyme (selenoprotein) Gluathione Peroxidase 4 (GPx4), an enzyme that utilizes glutathione to directly detoxify lipid peroxides.

View Article and Find Full Text PDF

Unlabelled: Resistance to immune checkpoint blockade (ICB) therapy represents a formidable clinical challenge limiting the efficacy of immunotherapy. In particular, prostate cancer poses a challenge for ICB therapy due to its immunosuppressive features. A ketogenic diet (KD) has been reported to enhance response to ICB therapy in some other cancer models.

View Article and Find Full Text PDF

Targeting programmed cell death protein 1 (PD-1) is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment. Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1).

View Article and Find Full Text PDF

Ferroptosis is a non-apoptotic form of cell death that can be triggered by inhibiting the system x cystine/glutamate antiporter or the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). We have investigated how cell cycle arrest caused by stabilization of p53 or inhibition of cyclin-dependent kinase 4/6 (CDK4/6) impacts ferroptosis sensitivity. Here, we show that cell cycle arrest can enhance sensitivity to ferroptosis induced by covalent GPX4 inhibitors (GPX4i) but not system x inhibitors.

View Article and Find Full Text PDF