J Natl Cancer Inst
January 2016
Background: Individuals with severe generalized recessive dystrophic epidermolysis bullosa (RDEB), an inherited blistering disorder caused by mutations in the COL7A1 gene, develop unexplained aggressive squamous cell carcinomas (SCC). Here we report that loss of type VII collagen (Col7) in SCC results in increased TGFβ signaling and angiogenesis in vitro and in vivo.
Methods: Stable knockdown (KD) of Col7 was established using shRNA, and cells were used in a mouse xenograft model.
Axl is a receptor tyrosine kinase (RTK) upregulated in various tumors including cutaneous squamous cell carcinoma (SCC). Axl expression correlates with poor prognosis and induction of epithelial-mesenchymal transition (EMT), hence we hypothesized that Axl is involved in the disruption of cell-cell adhesion to allow invasion and chemotherapy resistance of the cancer stem cell population. Cutaneous SCC cell lines with stable knockdown of Axl were generated using retroviral vectors.
View Article and Find Full Text PDFAutoinhibited p21-activated kinase 1 (Pak1) can be activated in vitro by the plasma membrane-bound Rho GTPases Rac1 and Cdc42 as well as by the lipid phosphatidylinositol (4,5)-bisphosphate (PIP2). Activator binding is mediated by a GTPase-binding motif and an adjacent phosphoinositide-binding motif. Whether these two classes of activators play alternative, additive, or synergistic roles in Pak1 activation is unknown, as is their contributions to Pak1 activation in vivo.
View Article and Find Full Text PDFGaucher disease is a lysosomal storage disorder caused by a defect in the degradation of glucosylceramide catalyzed by the lysosomal enzyme β-glucocerebrosidase (GBA). GBA reaches lysosomes via association with its receptor, lysosomal integral membrane protein type 2 (LIMP-2). We found that distinct phosphatidylinositol 4-kinases (PI4Ks) play important roles at multiple steps in the trafficking pathway of the LIMP-2/GBA complex.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2011
Phosphatidylinositol 4-kinase type IIIa (PI4KIIIα) is one of four mammalian PI 4-kinases that catalyzes the first committed step in polyphosphoinositide synthesis. PI4KIIIα has been linked to regulation of ER exit sites and to the synthesis of plasma membrane phosphoinositides and recent studies have also revealed its importance in replication of the Hepatitis C virus in liver. Two isoforms of the mammalian PI4KIIIα have been described and annotated in GenBank: a larger, ~230kDa (isoform 2) and a shorter splice variant containing only the ~97kDa C-terminus that includes the catalytic domain (isoform 1).
View Article and Find Full Text PDF