Publications by authors named "Z Szeltner"

Guanine quadruplexes (G4s) are stable four-stranded secondary DNA structures held together by noncanonical G-G base tetrads. We synthesised the nucleoside analogue 2'-deoxy-5-hydroxyuridine (H) and inserted its phosphoramidite into telomeric repeat-type model oligonucleotides. Full and partial substitutions were made, replacing all guanines in all the three tetrads of a three-tier G4 structure, or only in the putative upper, central, or lower tetrads.

View Article and Find Full Text PDF

Defects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch-mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells.

View Article and Find Full Text PDF

DNA damage removal by nucleotide excision repair (NER) and replicative bypass via translesion synthesis (TLS) and template switch (TSw) are important in ensuring genome stability. In this study, we tested the applicability of an SV40 large T antigen-based replication system for the simultaneous examination of these damage tolerance processes. Using both Sanger and next-generation sequencing combined with lesion-specific qPCR and replication efficiency studies, we demonstrate that this system works well for studying NER and TLS, especially its one-polymerase branch, while it is less suited to investigations of homology-related repair processes, such as TSw.

View Article and Find Full Text PDF

Post-translational modifications of Proliferating Cell Nuclear Antigen (PCNA) play a key role in regulating the bypass of DNA lesions during DNA replication. PCNA can be monoubiquitylated at lysine 164 by the RAD6-RAD18 ubiquitin ligase complex. Through this modification, PCNA can interact with low fidelity Y family DNA polymerases to promote translesion synthesis.

View Article and Find Full Text PDF

Background: Genomic mutations caused by cytotoxic agents used in cancer chemotherapy may cause secondary malignancies as well as contribute to the evolution of treatment-resistant tumour cells. The stable diploid genome of the chicken DT40 lymphoblast cell line, an established DNA repair model system, is well suited to accurately assay genomic mutations.

Results: We use whole genome sequencing of multiple DT40 clones to determine the mutagenic effect of eight common cytotoxics used for the treatment of millions of patients worldwide.

View Article and Find Full Text PDF