TMEM176B is a member of the membrane spanning 4-domains (MS4) family of transmembrane proteins, and a putative ion channel that is expressed in immune cells and certain cancers. We aimed to understand the role of TMEM176B in cancer cell signaling, gene expression, cell proliferation, and migration in vitro, as well as tumor growth in vivo. We generated breast cancer cell lines with overexpressed and silenced TMEM176B, and a therapeutic antibody targeting TMEM176B.
View Article and Find Full Text PDFActivating transcription factor-5 (ATF5) is an anti-apoptotic factor and has been implicated in enhancing the survival of cancer cells under stress and in regulating the autophagy process. Targeting ATF5 in anticancer therapy may be particularly attractive because of its differential role in cancer cells than in non-transformed cells, thus allowing specificity of the treatment. Using the delivery of short hairpin RNA vectors into the Mvt1 and Met1 cell lines, we tested the role of ATF5 in the development of mammary tumors and in regulating proliferation and migration of these cells .
View Article and Find Full Text PDFBackground: The pro-tumorigenic effects of the insulin-like growth factor receptor (IGF1R) are well described. IGF1R promotes cancer cell survival and proliferation and prevents apoptosis, and, additionally it was shown that IGF1R levels are significantly elevated in most common human malignancies including breast cancer. However, results from phase 3 clinical trials in unselected patients demonstrated lack of efficacy for anti-IGF1R therapy.
View Article and Find Full Text PDFBackground: Type 1 diabetes is an autoimmune disease, characterized by a loss of pancreatic β-cell mass and function, which results in dramatic reductions in insulin secretion and circulating insulin levels. Patients with type 1 diabetes are traditionally treated with insulin injections and insulin pumps ex vivo or undergo transplantation. Growth hormone (GH) has been shown to be involved in β-cell function and survival in culture.
View Article and Find Full Text PDFHorm Metab Res
September 2013
Obesity is associated with hyperleptinemia and this has led to the suggestion that leptin maybe a factor in cancer progression. To study the effect of leptin on cancer progression we used a mouse model of diabetes that was shown to enhance tumor progression and thereby determine if leptin affects cancer progression despite improvements in metabolic status. Mammary tumors were allowed to develop in male and female mice following orthotopic injection of cells expressing oncogenes.
View Article and Find Full Text PDF