Publications by authors named "Z Selinger"

Several major bacterial pathogens use the type III secretion system (TTSS) to deliver virulence factors into host cells. Bacterial Rho GTPase activating proteins (RhoGAPs) comprise a remarkable family of type III secreted toxins that modulate cytoskeletal dynamics and manipulate cellular signaling pathways. We show that the RhoGAP activity of Salmonella SptP and Pseudomonas ExoS toxins is resistant to variations in the concentration of NaCl or MgCl(2), unlike the known salt dependant nature of the activity of some eukaryotic GAPs such as p190, RanGAP and p120GAP.

View Article and Find Full Text PDF

Light adaptation is a process that enables photoreceptor cells to operate over a wide range of light intensities without saturation. In invertebrate photoreceptors, fast adaptation is mediated by a Ca2+-dependent negative-feedback mechanism, which mainly affects the terminal steps of the cascade. Therefore, the response to each photon is smaller as light intensity increases, accommodating both high sensitivity and a vast dynamic range.

View Article and Find Full Text PDF
Discovery of G protein signaling.

Annu Rev Biochem

September 2008

The mechanism of transmembrane signaling by the receptor-activated adenylyl cyclase was an enigma. It was suggested that hydrolysis of GTP is a turn-off mechanism that resets the active adenylyl cyclase to the inactive state. To test this hypothesis, we developed a specific GTPase assay and found that the catecholamine adrenergic agonists stimulated the hydrolysis of GTP.

View Article and Find Full Text PDF

The N terminus of the Aeromonas salmonicida ADP-ribosylating toxin AexT displays in vitro GTPase-activating protein (GAP) activity for Rac1, CDC42, and RhoA. HeLa cells transfected with the AexT N terminus exhibit rounding and actin disordering. We propose that the Aeromonas salmonicida AexT toxin is a novel member of the growing family of bacterial RhoGAPs.

View Article and Find Full Text PDF

Gem, a member of the Rad,Gem/Kir subfamily of small G-proteins, has unique sequence features. We report here the crystallographic structure determination of the Gem G-domain in complex with nucleotide to 2.4 A resolution.

View Article and Find Full Text PDF