The balance between linear electron transport (LET) and cyclic electron transport (CET) plays an essential role in plant adaptation and protection against photo-induced damage. This balance is largely maintained by phosphorylation-driven alterations in the PSII-LHCII assembly and thylakoid membrane stacking. During the dark-to-light transition, plants shift this balance from CET, which prevails to prevent overreduction of the electron transport chain and consequent photo-induced damage, towards LET, which enables efficient CO assimilation and biomass production.
View Article and Find Full Text PDFCellular lineage tracking provides a means to observe population makeup at the clonal level, allowing exploration of heterogeneity, evolutionary and developmental processes and individual clones' relative fitness. It has thus contributed significantly to understanding microbial evolution, organ differentiation and cancer heterogeneity, among others. Its use, however, is limited because existing methods are highly specific, expensive, labour-intensive, and, critically, do not allow the repetition of experiments.
View Article and Find Full Text PDF