To explore why clinical 10 kHz spinal cord stimulation (10 kHz SCS) might improve neurological function in a model of painful diabetic neuropathy (PDN), the short-term behavioral, electrophysiological, and histological effects of 10 kHz SCS were studied using adult male streptozotocin (STZ)-induced diabetic Sprague-Dawley rats. Four testing groups were established: Naïve controls (N = 8), STZ controls (N = 7), STZ+Sham SCS (N = 9), and STZ+10 kHz SCS (N = 11). After intraperitoneal injection (60 mg/kg) of STZ caused the rats to become hyperglycemic, SCS electrodes were implanted in the dorsal epidural space over the L5-L6 spinal segments in the STZ+Sham SCS and STZ+10 kHz SCS groups and were stimulated for 14 days.
View Article and Find Full Text PDFKilohertz high-frequency spinal cord stimulation (kHF-SCS) is a rapidly advancing neuromodulatory technique in the clinical management of chronic pain. However, the precise cellular mechanisms underlying kHF-SCS-induced paresthesia-free pain relief, as well as the neural responses within spinal pain circuits, remain largely unexplored. In this study, using a novel preparation, we investigated the impact of varying kilohertz frequency SCS on dorsal horn neuron activation.
View Article and Find Full Text PDFBackground: Painful diabetic neuropathy (PDN) can result in the loss of protective sensation, in which people are at twice the likelihood of foot ulceration and three times the risk of lower extremity amputation. Here, we evaluated the long-term effects of high-frequency (10 kHz) paresthesia-independent spinal cord stimulation (SCS) on protective sensation in the feet and the associated risk of foot ulceration for individuals with PDN.
Methods: The SENZA-PDN clinical study was a randomized, controlled trial in which 216 participants with PDN were randomized to receive either conventional medical management (CMM) alone or 10 kHz SCS plus CMM, with optional treatment crossover after 6 months.
Since 1967, spinal cord stimulation (SCS) has been used to manage chronic intractable pain of the trunk and limbs. Low-intensity, paresthesia-free, 10 kHz SCS has demonstrated statistically- and clinically-superior long-term pain relief compared to conventional SCS. 10 kHz SCS has been proposed to operate via selective activation of inhibitory interneurons in the superficial dorsal horn.
View Article and Find Full Text PDFBackground: Low-intensity 10 kHz spinal cord stimulation (SCS) has been shown to provide pain relief in patients with chronic pain resulting from diabetic peripheral neuropathy (DPN). However to date, there have been no studies of 10 kHz SCS in animal models of diabetes. We aimed to establish correlative data of the effects of this therapy on behavioral and electrophysiological measures in a DPN model.
View Article and Find Full Text PDF