Background: Iron is one of the key microelements in the mammalian body and is the most abundant metal in the brain. Iron, a very important chemical element in the body of mammals, is the most abundant metal in the brain. It participates in many chemical reactions taking place in the central nervous system acting as a cofactor in key enzymatic reactions involved in neurotransmitter synthesis and degradation, dendritic arborization, and myelination.
View Article and Find Full Text PDFPreclinical and clinical studies have shown that the antipsychotic drug aripiprazole and the antioxidant N-acetylcysteine have unique biological properties. The aim of the study was to investigate, in a rat model of schizophrenia, the effects of chronic administration of these drugs on schizophrenia-like behaviors and anaerobic cysteine metabolism in the hippocampus (HIP). The schizophrenia-type changes were induced in Sprague-Dawley rats by repeated administration of the glutathione synthesis inhibitor l-butionine-(S,R)-sulfoximine in combination with the dopamine reuptake inhibitor GBR 12909 in the early postnatal period.
View Article and Find Full Text PDFRecent studies suggest that impaired glutathione synthesis and distorted dopaminergic transmission are important factors in the pathophysiology of schizophrenia. In the present study, on the postnatal days p5-p16, male pups were treated with the inhibitor of glutathione synthesis, L-buthionine-(S,R)- sulfoximine (BSO, 3.8 or 7.
View Article and Find Full Text PDFTreatment of negative symptoms and cognitive disorders in patients with schizophrenia is still a serious clinical problem. The aim of our study was to compare the efficacy of chronic administration of the atypical antipsychotic drug aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl] butoxy}-3,4-dihydro-2(1H)-quinolinone; ARI) and the well-known antioxidant N-acetylcysteine (NAC) both in alleviating schizophrenia-like social and cognitive deficits and in reducing the decreases in the levels of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex (PFC) and hippocampus (HIP) of adult Sprague-Dawley rats, that have been induced by chronic administration of the model compound L-buthionine-(S, R)-sulfoximine (BSO) during the early postnatal development (p5-p16). ARI was administered at doses of 0.
View Article and Find Full Text PDF