Publications by authors named "Z R Bardosi"

Purpose: Multi-zoom microscopic surface reconstructions of operating sites, especially in ENT surgeries, would allow multimodal image fusion for determining the amount of resected tissue, for recognizing critical structures, and novel tools for intraoperative quality assurance. State-of-the-art three-dimensional model creation of the surgical scene is challenged by the surgical environment, illumination, and the homogeneous structures of skin, muscle, bones, etc., that lack invariant features for stereo reconstruction.

View Article and Find Full Text PDF

Purpose: A patient registration and real-time surgical navigation system and a novel device and method (Noctopus) is presented. With any tracking system technology and a patient/target-specific registration marker configuration, submillimetric target registration error (TRE), high-precise application accuracy for single or multiple anatomical targets in image-guided neurosurgery or ENT surgery is realized.

Methods: The system utilizes the advantages of marker-based registration technique and allows to perform automatized patient registration using on the device attached and with patient scanned four fiducial markers.

View Article and Find Full Text PDF

In head and neck squamous cell carcinoma (HNSCC) pathologic cervical lymph nodes (LN) remain important negative predictors. Current criteria for LN-classification in contrast-enhanced computed-tomography scans (contrast-CT) are shape-based; contrast-CT imagery allows extraction of additional quantitative data ("features"). The data-driven technique to extract, process, and analyze features from contrast-CTs is termed "radiomics".

View Article and Find Full Text PDF

Automating fiducial detection and localization in the patient's pre-operative images can lead to better registration accuracy, reduced human errors, and shorter intervention time. Most current approaches are optimized for a single marker type, mainly spherical adhesive markers. A fully automated algorithm is proposed and evaluated for screw and spherical titanium fiducials, typically used in high-accurate frameless surgical navigation.

View Article and Find Full Text PDF