Publications by authors named "Z Papic"

In contrast with extended Bloch waves, a single particle can become spatially localized due to the so-called skin effect originating from non-Hermitian pumping. Here we show that in kinetically constrained many-body systems, the skin effect can instead manifest as dynamical amplification within the Fock space, beyond the intuitively expected and previously studied particle localization and clustering. We exemplify this non-Hermitian Fock skin effect in an asymmetric version of the PXP model and show that it gives rise to ergodicity-breaking eigenstates-the non-Hermitian analogs of quantum many-body scars.

View Article and Find Full Text PDF

Geometric fluctuations of the density mode in a fractional quantum Hall (FQH) state can give rise to a nematic FQH phase, a topological state with a spontaneously broken rotational symmetry. While experiments on FQH states in the second Landau level have reported signatures of putative FQH nematics in anisotropic transport, a realistic model for this state has been lacking. We show that the standard model of particles in the lowest Landau level interacting via the Coulomb potential realizes the FQH nematic transition, which is reached by a progressive reduction of the strength of the shortest-range Haldane pseudopotential.

View Article and Find Full Text PDF

Emerging quantum technologies hold the promise of unravelling difficult problems ranging from condensed matter to high-energy physics while, at the same time, motivating the search for unprecedented phenomena in their setting. Here, we use a custom-built superconducting qubit ladder to realize non-thermalizing states with rich entanglement structures in the middle of the energy spectrum. Despite effectively forming an "infinite" temperature ensemble, these states robustly encode quantum information far from equilibrium, as we demonstrate by measuring the fidelity and entanglement entropy in the quench dynamics of the ladder.

View Article and Find Full Text PDF

Protecting coherent quantum dynamics from chaotic environment is key to realizations of fragile many-body phenomena and their applications in quantum technology. We present a general construction that embeds a desired periodic orbit into a family of nonintegrable many-body Hamiltonians, whose dynamics is otherwise chaotic. Our construction is based on time-dependent variational principle that projects quantum dynamics onto a manifold of low-entangled states, and it complements earlier approaches for embedding nonthermal eigenstates, known as quantum many-body scars, into thermalizing spectra.

View Article and Find Full Text PDF

The Moore-Read state, one of the leading candidates for describing the fractional quantum Hall effect at filling factor ν=5/2, is a paradigmatic p-wave superconductor with non-Abelian topological order. Among its many exotic properties, the state hosts two collective modes: a bosonic density wave and a neutral fermion mode that arises from an unpaired electron in the condensate. It has recently been proposed that the descriptions of the two modes can be unified by postulating supersymmetry (SUSY) that relates them in the long-wavelength limit.

View Article and Find Full Text PDF